Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Feb;90(2):45-53.

[Various types of non-synaptic intercellular contacts in the developing brain of the rat]

[Article in Russian]
  • PMID: 3707364

[Various types of non-synaptic intercellular contacts in the developing brain of the rat]

[Article in Russian]
N N Bogolepov et al. Arkh Anat Gistol Embriol. 1986 Feb.

Abstract

Peculiarities of ultrastructural organization and localization of early forms of avascular nonsynaptic types of junctions formed in 14-18-day-old rat embryos have been studied; cerebral structures different in their phylogenic relations (the sensomotor cortex and nucleus caudatus) are taken as an example. Five main types of nonsynaptic intercellular junctions have been revealed: desmosome-like, gap, symmetric, asymmetric and mixed junctions. They differ by their ultrastructural organization. These types of junctions make the main types of contacts: soma-somatic, dendro-somatic, dendro-dendritic, axo-somatic, axo-dendritic. Desmosomes form the greatest number of the contacts. The earliest and the most primitive are gap junctions; they, evidently, reflect functional activity of desmosome-like junctions. The mixed junctions, perhaps, reflect the developmental stages of the intercellular contacts of transition from one type of junctions into another. Localization peculiarities of the nonsynaptic intercellular contacts are demonstrated: glomerule-like formations, establishment of numerous contacts looking like a successive chain, and so on. For some other indices a longer period of intercellular contact formation in the nucleus caudatus is noted, comparing the sensomotor cortex, though the latter is a newer structural cerebral formation from the phylogenic point of view.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources