Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 15:882:163502.
doi: 10.1016/j.scitotenv.2023.163502. Epub 2023 Apr 18.

Indoor air pollution from the household combustion of coal: Tempo-spatial distribution of gaseous pollutants and semi-quantification of source contribution

Affiliations

Indoor air pollution from the household combustion of coal: Tempo-spatial distribution of gaseous pollutants and semi-quantification of source contribution

Lifan Qin et al. Sci Total Environ. .

Abstract

Coal is a widely used solid fuel for cooking and heating activities in rural households, whose incomplete combustion in inefficient household stoves releases a range of gaseous pollutants. To evaluate the impact of coal combustion on indoor air quality, this study comprehensively investigated the indoor air pollution of typical gaseous pollutants, including formaldehyde (HCHO), carbon dioxide (CO2), carbon monoxide (CO), total volatile organic compounds (TVOC), and methane (CH4), during coal combustion process in rural households using online monitoring with high tempo-spatial resolution. The indoor concentrations of gaseous pollutants were considerably elevated during the coal combustion period, with the indoor concentrations being significantly higher than those in courtyard air. The levels of several gaseous pollutants (CO2, CO, TVOC, and CH4) in indoor air were much higher during the flaming phase than the de-volatilization and smoldering phases, while HCHO peaked in the de-volatilization phase. The gaseous pollutant concentrations mostly decreased from the room ceiling to the ground level, while their horizontal distribution was relatively uniform within the room. It was estimated that coal combustion accounted for about 71 %, 92 %, 63 %, 59 %, and 21 % of total exposure to indoor CO2, CO, TVOC, CH4, and HCHO, respectively. Improved stove combined with clean fuel could effectively lower the concentrations of CO2, CO, TVOC, and CH4 in indoor air and reduce the contributions of coal combustion to these gaseous pollutants by about 21-68 %. These findings help better understand the indoor air pollution resulting from residential coal combustion and could guide the development of intervention programs to improve indoor air quality in rural households of northern China.

Keywords: Fuel-stove combination; Indoor air pollution; Online monitoring; Residential coal combustion; Source contribution.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources