Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 11;104(1):137-145.
doi: 10.1093/jmammal/gyac091. eCollection 2023 Feb.

Prey tracking and predator avoidance in a Neotropical moist forest: a camera-trapping approach

Affiliations

Prey tracking and predator avoidance in a Neotropical moist forest: a camera-trapping approach

Constant Swinkels et al. J Mammal. .

Abstract

Whether prey species avoid predators and predator species track prey is a poorly understood aspect of predator-prey interactions, given measuring prey tracking by predators and predator avoidance by prey is challenging. A common approach to study these interactions among mammals in field situations is to monitor the spatial proximity of animals at fixed times, using GPS tags fitted to individuals. However, this method is invasive and only allows tracking of a subset of individuals. Here, we use an alternative, noninvasive camera-trapping approach to monitor temporal proximity of predator and prey animals. We deployed camera traps at fixed locations on Barro Colorado Island, Panama, where the ocelot (Leopardus pardalis) is the principal mammalian predator, and tested two hypotheses: (1) prey animals avoid ocelots; and (2) ocelots track prey. We quantified temporal proximity of predators and prey by fitting parametric survival models to the time intervals between subsequent prey and predator captures by camera traps, and then compared the observed intervals to random permutations that retained the spatiotemporal distribution of animal activity. We found that time until a prey animal appeared at a location was significantly longer than expected by chance if an ocelot had passed, and that the time until an ocelot appeared at a location was significantly shorter than expected by chance after prey passage. These findings are indirect evidence for both predator avoidance and prey tracking in this system. Our results show that predator avoidance and prey tracking influence predator and prey distribution over time in a field setting. Moreover, this study demonstrates that camera trapping is a viable and noninvasive alternative to GPS tracking for studying certain predator-prey interactions.

Debido a las dificultades en evaluar como los depredadores rastrean su presa, y como las presas eluden a depredadores, un aspecto todavía poco conocido en la interacción entre depredadores y presas es si estas evitan a depredadores o si estos rastrean las presas. Una enfoque común para estudiar estas interacciones entre mamíferos bajo condiciones de campo es de seguir la proximidad espacial de animales a intervalos fijos, usando marbetes de GPS ajustados a los individuos. Sin embargo, este método es invasivo y solo permite obtener información de un número limitado de individuos. En este estudio, usamos cámaras trampas como método alternativo y no invasivo, para monitorear el proximidad temporal entre depredadores y presas en sitios fijos en Isla Barro Colorado, Panamá, donde los ocelotes (Leopardus pardalis) son el principal mamífero depredador. Evaluamos dos hipótesis: (1) las presas evitan a los ocelotes, y (2) los ocelotes rastrean a las presas. Cuantificamos la proximidad temporal de depredadores y presas ajustando modelos paramétricos de supervivencia a los intervalos de tiempo ocurridos entre observaciones subsecuentes en las cámaras trampas, y luego comparamos los intervalos observados con permutaciones aleatorias que retuvieron la distribución espacio-temporal de la actividad de los animales. Encontramos que, si un ocelote había pasado por dicha área, el tiempo en el cual una presa aparece en una ubicación fue significativamente mayor que lo esperado aleatoriamente. También encontramos que, después de pasar una presa por un área, el tiempo en que un ocelote tarda en aparecer fue significativamente menor que lo esperado al azar. Estos resultados constituyen evidencia indirecta que las presas evitan a los depredadores y que estos rastrean a las presas. Nuestros resultados muestran que la evitación de los depredadores y el rastreo de las presas influyen en la distribución de presas y depredadores a lo largo del tiempo en un escenario natural. Este estudio también demuestra que las cámaras trampas son una alternativa viable y no invasiva, con respecto a marbetes de GPS, para estudiar ciertas interacciones entre presas y depredadores.

Keywords: Barro Colorado Island; Central American agouti; camera trapping; ocelot; predator avoidance; prey tracking; survival analysis; temporal proximity logging.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1.
Fig. 1.
—Map of Barro Colorado Island showing the locations at which camera traps monitored the mammal community. Lines indicate the trail system. Research-free areas are shaded red. Filled dots are points shared with the grid of the Tropical Ecology Assessment and Monitoring (TEAM) program (Jansen et al. 2014). The dark gray squares represent permanent vegetation survey plots.
Fig. 2.
Fig. 2.
—Daily activity patterns (kernel density, 250 reps) of ocelot (A) and its prey species (B) at Barro Colorado Island, Panama. Curves and 95% confidence envelopes were fitted to time stamps of camera-trap records. Images of ocelot and agouti were made by Helen J. Esser.
Fig. 3.
Fig. 3.
—Evidence for prey tracking by ocelots (A, C) and ocelot avoidance by prey (B, D) on Barro Colorado Island, Panama. Survival probability curves (A, B), fitted using a Weibull distribution, quantify respectively ocelot–prey (predator avoidance) and prey–ocelot (prey tracking) intervals recorded by camera traps. The gray lines represent 999 random distributions, and the black line is the observed distribution. Distributions of the constant hazard rate (C, D) as derived from the random survival probability curves in A and B, respectively (gray bars). The arrows indicate the observed hazard rate.

References

    1. Aliaga-Rossel E., Kays R.W., Fragoso J.M.V.. 2008. Home-range use by the Central American agouti (Dasyprocta punctata) on Barro Colorado Island, Panama. Journal of Tropical Ecology 24:367–374.
    1. Aliaga-Rossel E., Moreno R.S., Kays R.W., Giacalone J.. 2006. Ocelot (Leopardus pardalis) predation on agouti (Dasyprocta punctata). Biotropica 38:691–694.
    1. Basille M., Fortin D., Dussault C., Bastille-Rousseau G., Ouellet J.P., Courtois R.. 2015. Plastic response of fearful prey to the spatiotemporal dynamics of predator distribution. Ecology 96:2622–2631. - PubMed
    1. Berger-Tal O., Bar-David S.. 2015. Recursive movement patterns: review and synthesis across species. Ecosphere 6:149.
    1. Brose U., et al. . 2019. Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution 3:919–927. - PubMed