Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1986 Apr 22;25(8):2141-8.
doi: 10.1021/bi00356a044.

Calcium/phosphate-induced immobilization of fluorescent phosphatidylserine in synthetic bilayer membranes: inhibition of lipid transfer between vesicles

Comparative Study

Calcium/phosphate-induced immobilization of fluorescent phosphatidylserine in synthetic bilayer membranes: inhibition of lipid transfer between vesicles

Y Tanaka et al. Biochemistry. .

Abstract

Resonance energy transfer between 4-nitro-2,1,3-benzoxadiazole (NBD) acyl chain labeled phospholipid analogues and (lissamine) rhodamine B labeled phosphatidylethanolamine was used to monitor the rate of NBD-labeled lipid transfer between a variety of small unilamellar donor vesicles and dioleoylphosphatidylcholine (DOPC) acceptor vesicles. In the presence of appropriate concentrations of Ca2+ and phosphate, the transfer rate of NBD-phosphatidylserine (NBD-PS) from vesicles composed of lipid extracts from human red blood cells was reduced by approximately 10-fold, while the transfer rates of NBD-phosphatidylcholine, -ethanolamine, -glycerol, -N-succinylethanolamine, and -phosphatidic acid were essentially unaffected. A systematic evaluation of the lipid composition needed to facilitate the Ca2+/phosphate-induced inhibition of NBD-PS transfer revealed that the process was dependent upon the inclusion of both cholesterol and phosphatidylethanolamine (PE) in the donor vesicle population. Inhibition of NBD-PS transfer required the sequential addition of phosphate and Ca2+ to the vesicles, indicating that the combined interaction of Ca2+ and phosphate at the membrane surface was a prerequisite for inhibition to occur. Parallel experiments designed to determine the possible mechanism of this phenomenon showed that inhibition of NBD-PS transfer was not due to Ca2+-mediated phase separations or vesicle-vesicle fusion. However, the addition of Ca2+ and phosphate to vesicles composed of total red blood cell lipids or cholesterol/PE did result in their aggregation. On the other hand, aggregation per se did not seem to be responsible for the inhibition of transfer since NBD-PS-containing vesicles composed of DOPC or DOPC/DOPE also aggregated, although NBD-PS transfer was unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources