Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jun 13;858(1):125-34.
doi: 10.1016/0005-2736(86)90298-1.

The Ba2+ sensitivity of the Na+-induced Ca2+ efflux in heart mitochondria: the site of inhibitory action

The Ba2+ sensitivity of the Na+-induced Ca2+ efflux in heart mitochondria: the site of inhibitory action

G L Lukács et al. Biochim Biophys Acta. .

Abstract

The Na+-induced Ca2+ release from rat heart mitochondria was measured in the presence of Ruthenium red. Ba2+ effectively inhibited the Na+-induced Ca2+ release. At 10 mM Na+ 50% inhibition was reached by 1.51 +/- 0.48 (S.D., n = 8) microM Ba2+ in the presence of 0.1 mg/ml albumin and by 0.87 +/- 0.25 (S.D., n = 3) microM Ba2+ without albumin. In order to inhibit, it was not required that Ba2+ ions enter the matrix. 140Ba2+ was not accumulated in the mitochondrial matrix space; further, in contrast to liver mitochondria, Ba2+ inhibition was immediate. The Na+-induced Ca2+ release was inhibited by Ba2+ non-competitively, with respect of the extramitochondrial Na+. The double inhibitor titration of the Na+-Ca2+ exchanger with Ba2+ in the presence and absence of extramitochondrial Ca2+ revealed that the exchanger possesses a common binding site for extramitochondrial Ca2+ and Ba2+, presumably the regulatory binding site of the Na+-Ca2+ exchanger, which was described by Hayat and Crompton (Biochem. J. 202 (1982) 509-518). All these observations indicate that Ba2+ acts at the cytoplasmic surface of the inner mitochondrial membrane. The inhibitory properties of Ba2+ on the Na+-dependent Ca2+ release in heart mitochondria are basically different from those found on Na+-independent Ca2+ release in liver mitochondria (Lukács, G.L. and Fonyó, A. (1985) Biochim. Biophys. Acta 809, 160-166).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources