Vesicles of variable sizes produced by a rapid extrusion procedure
- PMID: 3707960
- DOI: 10.1016/0005-2736(86)90302-0
Vesicles of variable sizes produced by a rapid extrusion procedure
Abstract
Previous studies from this laboratory have shown that large unilamellar vesicles can be efficiently produced by extrusion of multilamellar vesicles through polycarbonate filters with a pore size of 100 nm (Hope, M.J., Bally, M.B., Webb, G. and Cullis, P.R. (1985) Biochim. Biophys. Acta 812, 55-65). In this work it is shown that similar procedures can be employed for the production of homogeneously sized unilamellar or plurilamellar vesicles by utilizing filters with pore sizes ranging from 30 to 400 nm. The unilamellarity and trapping efficiencies of these vesicles can be significantly enhanced by freezing and thawing the multilamellar vesicles prior to extrusion. This procedure is particularly applicable when very high lipid concentrations (400 mg/ml) are used, where extrusion of the frozen and thawed multilamellar vesicles through 100 and 400 nm filters results in trapping efficiencies of 56 and 80%, respectively. Freeze-fracture electron microscopy revealed that vesicles produced at these lipid concentrations exhibit size distributions and extent of multilamellar character comparable to systems produced at lower lipid levels. These results indicate that the freeze-thaw and extrusion process is the technique of choice for the production of vesicles of variable sizes and high trapping efficiency.
Similar articles
-
Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles.Biochim Biophys Acta. 1985 Jul 11;817(1):193-6. doi: 10.1016/0005-2736(85)90084-7. Biochim Biophys Acta. 1985. PMID: 4005257
-
Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance.Eur Biophys J. 2000;29(3):184-95. doi: 10.1007/s002490000077. Eur Biophys J. 2000. PMID: 10968210
-
Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential.Biochim Biophys Acta. 1985 Jan 10;812(1):55-65. doi: 10.1016/0005-2736(85)90521-8. Biochim Biophys Acta. 1985. PMID: 23008845
-
Neutrase entrapment in stable multilamellar and large unilamellar vesicles for the acceleration of cheese ripening.J Microencapsul. 1995 May-Jun;12(3):307-25. doi: 10.3109/02652049509010298. J Microencapsul. 1995. PMID: 7650594
-
Freeze-fracture of lipids and model membrane systems.J Electron Microsc Tech. 1989 Dec;13(4):277-87. doi: 10.1002/jemt.1060130403. J Electron Microsc Tech. 1989. PMID: 2681573 Review.
Cited by
-
Triatoma virus recombinant VP4 protein induces membrane permeability through dynamic pores.J Virol. 2015 Apr;89(8):4645-54. doi: 10.1128/JVI.00011-15. Epub 2015 Feb 11. J Virol. 2015. PMID: 25673713 Free PMC article.
-
The pH-Dependent Trigger in Diphtheria Toxin T Domain Comes with a Safety Latch.Biophys J. 2016 Nov 1;111(9):1946-1953. doi: 10.1016/j.bpj.2016.09.030. Biophys J. 2016. PMID: 27806276 Free PMC article.
-
LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs.Autophagy. 2022 Dec;18(12):2985-3003. doi: 10.1080/15548627.2022.2062111. Epub 2022 Apr 13. Autophagy. 2022. PMID: 35414338 Free PMC article.
-
Evaluation of the kinetic properties of the sporulation protein SpoIIE of Bacillus subtilis by inclusion in a model membrane.J Bacteriol. 2004 May;186(10):3195-201. doi: 10.1128/JB.186.10.3195-3201.2004. J Bacteriol. 2004. PMID: 15126482 Free PMC article.
-
Identification of small molecules that strongly inhibit bacterial quorum sensing using a high-throughput lipid vesicle lysis assay.Cell Chem Biol. 2022 Apr 21;29(4):605-614.e4. doi: 10.1016/j.chembiol.2021.12.005. Epub 2021 Dec 20. Cell Chem Biol. 2022. PMID: 34932995 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources