Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 27;20(4):1673-1688.
doi: 10.1021/acs.jctc.3c00118. Epub 2023 Apr 21.

Development of a Data-Driven Integrative Model of a Bacterial Chromosome

Affiliations

Development of a Data-Driven Integrative Model of a Bacterial Chromosome

Abdul Wasim et al. J Chem Theory Comput. .

Abstract

The chromosome of archetypal bacteria E. coli is known for a complex topology with a 4.6 × 106 base pairs (bp) long sequence of nucleotides packed within a micrometer-sized cellular confinement. The inherent organization underlying this chromosome eludes general consensus due to the lack of a high-resolution picture of its conformation. Here we present our development of an integrative model of E. coli at a 500 bp resolution (https://github.com/JMLab-tifrh/ecoli_finer), which optimally combines a set of multiresolution genome-wide experimentally measured data within a framework of polymer based architecture. In particular the model is informed with an intragenome contact probability map at 5000 bp resolution derived via the Hi-C experiment and RNA-sequencing data at 500 bp resolution. Via dynamical simulations, this data-driven polymer based model generates an appropriate conformational ensemble commensurate with chromosome architectures that E. coli adopts. As a key hallmark of the E. coli chromosome the model spontaneously self-organizes into a set of nonoverlapping macrodomains and suitably locates plectonemic loops near the cell membrane. As novel extensions, it predicts a contact probability map simulated at a higher resolution than precedent experiments and can demonstrate segregation of chromosomes in a partially replicating cell. Finally, the modular nature of the model helps us devise control simulations to quantify the individual role of key features in hierarchical organization of the bacterial chromosome.

PubMed Disclaimer

LinkOut - more resources