Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jul;46(7):3490-4.

Tissue uridine pools: evidence in vivo of a concentrative mechanism for uridine uptake

  • PMID: 3708581

Tissue uridine pools: evidence in vivo of a concentrative mechanism for uridine uptake

J W Darnowski et al. Cancer Res. 1986 Jul.

Abstract

Pools of free uridine, ranging from 7.3 to 38.0 nmol/g wet weight, have been detected in a variety of freeze-clamped murine tissues. These concentrations average 10-fold greater than that detected in plasma. The kinetics of these pools after an i.v. tracer dose of [3H]uridine suggest that the initial rapid disappearance of [3H]uridine from plasma (t1/2 = 2 min) reflects distribution into tissues as well as catabolism by the liver. Subsequently, the tissue uridine pools turn over with half-lives of 13 to 18 h. Analyses of the activity of the proximal enzymes in uridine metabolism (uridine phosphorylase and uridine kinase) suggest that the phosphorylase correlates with the size of tissue uridine pools. Further evidence for this is seen in the sustained 5- to 15-fold increase in both tissue and plasma uridine concentrations after treatment with benzylacyclouridine, a potent uridine phosphorylase inhibitor. In contrast, a nonphysiological dose of exogenous uridine (250 mg/kg) briefly increases the plasma concentration of uridine to over 1 mM but it returns to below 10 microM within 1 h. Under these conditions as well, tissue concentrations of uridine increase 5- to 10-fold in most tissues, 20-fold in spleen, and 70-fold in kidney. High cellular concentrations of free uridine relative to medium are also observed in dispersed murine splenocytes. Furthermore, splenocytes incubated in 5 microM [3H]uridine achieved a 2-fold higher intracellular concentration of [3H]uridine in less than 1 min independent of phosphorylation. Thymidine was not concentrated in this system nor did nitrobenzylthioinosine inhibit [3H]uridine uptake. These findings suggest that in normal tissues and explanted cells, pools of uridine are sustained by a concentrative transport mechanism and constitute a previously unrecognized reservoir of pyrimidine nucleosides in tissues.

PubMed Disclaimer

Similar articles

Cited by

Publication types