Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jul;21(8):2015-2025.
doi: 10.1016/j.cgh.2023.04.007. Epub 2023 Apr 22.

Artificial Intelligence Applications in Hepatology

Affiliations
Free article
Review

Artificial Intelligence Applications in Hepatology

Jörn M Schattenberg et al. Clin Gastroenterol Hepatol. 2023 Jul.
Free article

Abstract

Over the past 2 decades, the field of hepatology has witnessed major developments in diagnostic tools, prognostic models, and treatment options making it one of the most complex medical subspecialties. Through artificial intelligence (AI) and machine learning, computers are now able to learn from complex and diverse clinical datasets to solve real-world medical problems with performance that surpasses that of physicians in certain areas. AI algorithms are currently being implemented in liver imaging, interpretation of liver histopathology, noninvasive tests, prediction models, and more. In this review, we provide a summary of the state of AI in hepatology and discuss current challenges for large-scale implementation including some ethical aspects. We emphasize to the readers that most AI-based algorithms that are discussed in this review are still considered in early development and their utility and impact on patient outcomes still need to be assessed in future large-scale and inclusive studies. Our vision is that the use of AI in hepatology will enhance physician performance, decrease the burden and time spent on documentation, and reestablish the personalized patient-physician relationship that is of utmost importance for obtaining good outcomes.

Keywords: Computer-Based Learning; Deep Learning; Ethics; Machine Learning.

PubMed Disclaimer

LinkOut - more resources