QuNex-An integrative platform for reproducible neuroimaging analytics
- PMID: 37090033
- PMCID: PMC10113546
- DOI: 10.3389/fninf.2023.1104508
QuNex-An integrative platform for reproducible neuroimaging analytics
Abstract
Introduction: Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability.
Methods: To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a "turnkey" command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features.
Results: The platform enables interoperable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia, including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows via a cohesive translational platform.
Discussion: Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease.
Keywords: cloud integration; containerization; data processing; diffusion MRI; functional MRI; high-performance computing; multi-modal analyses; neuroimaging.
Copyright © 2023 Ji, Demšar, Fonteneau, Tamayo, Pan, Kraljič, Matkovič, Purg, Helmer, Warrington, Winkler, Zerbi, Coalson, Glasser, Harms, Sotiropoulos, Murray, Anticevic and Repovš.
Conflict of interest statement
JJ is an employee of Manifest Technologies and has previously worked for Neumora (formerly BlackThorn Therapeutics) and is a co-inventor on the following patent: AA, JM, and JJ: systems and methods for neuro-behavioral relationships in dimensional geometric embedding (N-BRIDGE), PCT International Application No. PCT/US2119/022110, filed March 13, 2019. AK and AM have previously consulted for Neumora (formerly BlackThorn Therapeutics). CF, JD, and ZT have previously consulted for Neumora (formerly BlackThorn Therapeutics) and consult for Manifest Technologies. MHe and LP are employees of Manifest Technologies. VZ and SS consults for Manifest Technologies. JM and AA consult for and hold equity with Neumora (formerly BlackThorn Therapeutics), Manifest Technologies, and are co-inventors on the following patents: JM, AA, and Martin, WJ: Methods and tools for detecting, diagnosing, predicting, prognosticating, or treating a neurobehavioral phenotype in a subject, U.S. Application No. 16/149,903 filed on October 2, 2018, U.S. Application for PCT International Application No. 18/054,009 filed on October 2, 2018. GR consults for and holds equity with Neumora (formerly BlackThorn Therapeutics) and Manifest Technologies. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures
References
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
