Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023;31(4):713-729.
doi: 10.3233/XST-230001.

Dual attention fusion UNet for COVID-19 lesion segmentation from CT images

Affiliations

Dual attention fusion UNet for COVID-19 lesion segmentation from CT images

Yinjin Ma et al. J Xray Sci Technol. 2023.

Abstract

Background: Chest CT scan is an effective way to detect and diagnose COVID-19 infection. However, features of COVID-19 infection in chest CT images are very complex and heterogeneous, which make segmentation of COVID-19 lesions from CT images quite challenging.

Objective: To overcome this challenge, this study proposes and tests an end-to-end deep learning method called dual attention fusion UNet (DAF-UNet).

Methods: The proposed DAF-UNet improves the typical UNet into an advanced architecture. The dense-connected convolution is adopted to replace the convolution operation. The mixture of average-pooling and max-pooling acts as the down-sampling in the encoder. Bridge-connected layers, including convolution, batch normalization, and leaky rectified linear unit (leaky ReLU) activation, serve as the skip connections between the encoder and decoder to bridge the semantic gap differences. A multiscale pyramid pooling module acts as the bottleneck to fit the features of COVID-19 lesion with complexity. Furthermore, dual attention feature (DAF) fusion containing channel and position attentions followed the improved UNet to learn the long-dependency contextual features of COVID-19 and further enhance the capacity of the proposed DAF-UNet. The proposed model is first pre-trained on the pseudo label dataset (generated by Inf-Net) containing many samples, then fine-tuned on the standard annotation dataset (provided by the Italian Society of Medical and Interventional Radiology) with high-quality but limited samples to improve performance of COVID-19 lesion segmentation on chest CT images.

Results: The Dice coefficient and Sensitivity are 0.778 and 0.798 respectively. The proposed DAF-UNet has higher scores than the popular models (Att-UNet, Dense-UNet, Inf-Net, COPLE-Net) tested using the same dataset as our model.

Conclusion: The study demonstrates that the proposed DAF-UNet achieves superior performance for precisely segmenting COVID-19 lesions from chest CT scans compared with the state-of-the-art approaches. Thus, the DAF-UNet has promising potential for assisting COVID-19 disease screening and detection.

Keywords: Coronavirus disease 2019 (COVID-19); computed tomography (CT); deep learning; dual attention; medical image segmentation.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources