Acid-tolerant bacteria and prospects in industrial and environmental applications
- PMID: 37093306
- DOI: 10.1007/s00253-023-12529-w
Acid-tolerant bacteria and prospects in industrial and environmental applications
Abstract
Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F1-F0-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.
Keywords: Acid tolerance mechanisms; Acid-tolerant bacteria; Biofilm formation; Bioremediation; Urease system.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Similar articles
-
Molecular mechanism of proteolytic cleavage-dependent activation of CadC-mediated response to acid in E. coli.Commun Biol. 2024 Oct 16;7(1):1335. doi: 10.1038/s42003-024-06931-x. Commun Biol. 2024. PMID: 39415060 Free PMC article.
-
Control of acid resistance in Escherichia coli.J Bacteriol. 1999 Jun;181(11):3525-35. doi: 10.1128/JB.181.11.3525-3535.1999. J Bacteriol. 1999. PMID: 10348866 Free PMC article.
-
Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation.Biotechnol Adv. 2015 Nov 15;33(7):1484-92. doi: 10.1016/j.biotechadv.2015.06.001. Epub 2015 Jun 6. Biotechnol Adv. 2015. PMID: 26057689 Review.
-
[Bacterial acid tolerance mechanism based on acid signal transduction system and its applications].Sheng Wu Gong Cheng Xue Bao. 2024 Mar 25;40(3):644-664. doi: 10.13345/j.cjb.230346. Sheng Wu Gong Cheng Xue Bao. 2024. PMID: 38545969 Review. Chinese.
-
New insight into acid-resistant enzymes from natural mutations of Escherichia coli Nissle 1917.Enzyme Microb Technol. 2024 Dec;181:110526. doi: 10.1016/j.enzmictec.2024.110526. Epub 2024 Oct 20. Enzyme Microb Technol. 2024. PMID: 39447280
Cited by
-
Response of Escherichia coli to Acid Stress: Mechanisms and Applications-A Narrative Review.Microorganisms. 2024 Aug 28;12(9):1774. doi: 10.3390/microorganisms12091774. Microorganisms. 2024. PMID: 39338449 Free PMC article. Review.
-
Molecular mechanism of proteolytic cleavage-dependent activation of CadC-mediated response to acid in E. coli.Commun Biol. 2024 Oct 16;7(1):1335. doi: 10.1038/s42003-024-06931-x. Commun Biol. 2024. PMID: 39415060 Free PMC article.
-
An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system.Front Cell Infect Microbiol. 2025 Jan 31;15:1509037. doi: 10.3389/fcimb.2025.1509037. eCollection 2025. Front Cell Infect Microbiol. 2025. PMID: 39958932 Free PMC article. Review.
-
Strategies to enhance stress tolerance in lactic acid bacteria across diverse stress conditions.World J Microbiol Biotechnol. 2024 Mar 6;40(4):126. doi: 10.1007/s11274-024-03905-3. World J Microbiol Biotechnol. 2024. PMID: 38446232 Review.
-
Phosphoproteomics analysis of acid stress response of Alicyclobacillus acidoterrestris in response to acid stress.Appl Microbiol Biotechnol. 2025 Jun 7;109(1):141. doi: 10.1007/s00253-025-13525-y. Appl Microbiol Biotechnol. 2025. PMID: 40483348 Free PMC article.
References
-
- Abdullah-Al-Mahin S, S., Higashi, C., Matsumoto, S., & Sonomoto, K. (2010) Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Appl Environ Microbiol 76(13):4277–4285. https://doi.org/10.1128/AEM.02878-09 - DOI - PubMed - PMC
-
- Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O (2011) Separation of recombination and SOS response in Escherichia coli recA suggests lexA interaction sites. PLoS Genet 7(9):e1002244. https://doi.org/10.1371/journal.pgen.1002244 - DOI - PubMed - PMC
-
- Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP (2020) Comparative review of the responses of Listeria monocytogenes and Escherichia coli to low pH stress. Genes 11(11):1330. https://doi.org/10.3390/genes11111330 - DOI - PubMed - PMC
-
- Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 1986. https://doi.org/10.3389/fmicb.2018.01986
-
- Bearson BL, Lee IS, Casey TA (2009) Escherichia coli O157: H7 glutamate-and arginine-dependent acid-resistance systems protect against oxidative stress during extreme acid challenge. J Microbiol 155(3):805–812. https://doi.org/10.1099/mic.0.022905-0 - DOI