Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May;617(7959):100-104.
doi: 10.1038/s41586-023-05875-2. Epub 2023 Apr 24.

Bipolar impact and phasing of Heinrich-type climate variability

Affiliations

Bipolar impact and phasing of Heinrich-type climate variability

Kaden C Martin et al. Nature. 2023 May.

Abstract

During the last ice age, the Laurentide Ice Sheet exhibited extreme iceberg discharge events that are recorded in North Atlantic sediments1. These Heinrich events have far-reaching climate impacts, including widespread disruptions to hydrological and biogeochemical cycles2-4. They occurred during Heinrich stadials-cold periods with strongly weakened Atlantic overturning circulation5-7. Heinrich-type variability is not distinctive in Greenland water isotope ratios, a well-dated site temperature proxy8, complicating efforts to assess their regional climate impact and phasing against Antarctic climate change. Here we show that Heinrich events have no detectable temperature impact on Greenland and cooling occurs at the onset of several Heinrich stadials, and that both types of Heinrich variability have a distinct imprint on Antarctic climate. Antarctic ice cores show accelerated warming that is synchronous with increases in methane during Heinrich events, suggesting an atmospheric teleconnection9, despite the absence of a Greenland climate signal. Greenland ice-core nitrogen stable isotope ratios, a sensitive temperature proxy, indicate an abrupt cooling of about three degrees Celsius at the onset of Heinrich Stadial 1 (17.8 thousand years before present, where present is defined as 1950). Antarctic warming lags this cooling by 133 ± 93 years, consistent with an oceanic teleconnection. Paradoxically, proximal sites are less affected by Heinrich events than remote sites, suggesting spatially complex event dynamics.

PubMed Disclaimer

References

    1. Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).
    1. Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016). - PubMed - PMC - DOI
    1. Stríkis, N. M. et al. South American monsoon response to iceberg discharge in the North Atlantic. Proc. Natl Acad. Sci. USA 115, 3788–3793 (2018). - PubMed - PMC - DOI
    1. Nguyen, D. C. et al. Precipitation response to Heinrich Event-3 in the northern Indochina as revealed in a high-resolution speleothem record. J. Asian Earth Sci. X 7, 100090 (2022).
    1. Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016). - PubMed - DOI

Publication types

LinkOut - more resources