Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics
- PMID: 37099802
- DOI: 10.1002/adma.202300756
Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics
Abstract
Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.
Keywords: biofabrication; bioprinting hydrogels; melt electrowriting; volumetric additive manufacturing.
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Similar articles
-
Multi-material Volumetric Bioprinting and Plug-and-play Suspension Bath Biofabrication via Bioresin Molecular Weight Tuning and via Multiwavelength Alignment Optics.Adv Mater. 2025 Apr;37(13):e2409355. doi: 10.1002/adma.202409355. Epub 2025 Feb 26. Adv Mater. 2025. PMID: 40012257 Free PMC article.
-
Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories.Adv Mater. 2022 Apr;34(15):e2110054. doi: 10.1002/adma.202110054. Epub 2022 Mar 6. Adv Mater. 2022. PMID: 35166410
-
Embedded bioprinting for designer 3D tissue constructs with complex structural organization.Acta Biomater. 2022 Mar 1;140:1-22. doi: 10.1016/j.actbio.2021.11.048. Epub 2021 Dec 5. Acta Biomater. 2022. PMID: 34875360 Review.
-
Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces.Biofabrication. 2020 Feb 19;12(2):025014. doi: 10.1088/1758-5090/ab69d9. Biofabrication. 2020. PMID: 31918421 Free PMC article.
-
Unveiling the potential of melt electrowriting in regenerative dental medicine.Acta Biomater. 2023 Jan 15;156:88-109. doi: 10.1016/j.actbio.2022.01.010. Epub 2022 Jan 10. Acta Biomater. 2023. PMID: 35026478 Free PMC article. Review.
Cited by
-
Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels.Mater Today Bio. 2023 Oct 28;23:100846. doi: 10.1016/j.mtbio.2023.100846. eCollection 2023 Dec. Mater Today Bio. 2023. PMID: 37953757 Free PMC article. Review.
-
3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space.Adv Healthc Mater. 2023 Sep;12(23):e2300443. doi: 10.1002/adhm.202300443. Epub 2023 Jun 23. Adv Healthc Mater. 2023. PMID: 37353904 Free PMC article.
-
Construction of a Biomimetic Tubular Scaffold Inspired by Sea Sponge Structure: Sponge-Like Framework and Cell Guidance.Adv Sci (Weinh). 2025 Apr;12(16):e2416627. doi: 10.1002/advs.202416627. Epub 2025 Feb 25. Adv Sci (Weinh). 2025. PMID: 39998257 Free PMC article.
-
Materials Advances in Devices for Heart Disease Interventions.Adv Mater. 2025 Jul;37(27):e2420114. doi: 10.1002/adma.202420114. Epub 2025 Apr 17. Adv Mater. 2025. PMID: 40244561 Free PMC article. Review.
-
Advances in melt electrowriting for cardiovascular applications.Front Bioeng Biotechnol. 2024 Sep 17;12:1425073. doi: 10.3389/fbioe.2024.1425073. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 39355277 Free PMC article. Review.
References
-
- R. Levato, T. Jungst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
-
- J. Groll, J. A. Burdick, D. W. Cho, B. Derby, M. Gelinsky, S. C. Heilshorn, T. Jüngst, J. Malda, V. A. Mironov, K. Nakayama, A. Ovsianikov, W. Sun, S. Takeuchi, J. J. Yoo, T. B. F. Woodfield, Biofabrication 2019, 11, 013001.
-
- K. S. Lim, R. Levato, P. F. Costa, M. D. Castilho, C. R. Alcala-Orozco, K. M. A. Van Dorenmalen, F. P. W. Melchels, D. Gawlitta, G. J. Hooper, J. Malda, T. B. F. Woodfield, Biofabrication 2018, 10, 034101.
-
- F. P. W. Melchels, J. Feijen, D. W. Grijpma, Biomaterials 2010, 31, 6121.
-
- H. W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, A. Atala, Nat. Biotechnol. 2016, 34, 312.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials