Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May;617(7961):488-492.
doi: 10.1038/s41586-023-05907-x. Epub 2023 Apr 26.

Nodeless electron pairing in CsV3Sb5-derived kagome superconductors

Affiliations

Nodeless electron pairing in CsV3Sb5-derived kagome superconductors

Yigui Zhong et al. Nature. 2023 May.

Abstract

The newly discovered kagome superconductors represent a promising platform for investigating the interplay between band topology, electronic order and lattice geometry1-9. Despite extensive research efforts on this system, the nature of the superconducting ground state remains elusive10-17. In particular, consensus on the electron pairing symmetry has not been achieved so far18-20, in part owing to the lack of a momentum-resolved measurement of the superconducting gap structure. Here we report the direct observation of a nodeless, nearly isotropic and orbital-independent superconducting gap in the momentum space of two exemplary CsV3Sb5-derived kagome superconductors-Cs(V0.93Nb0.07)3Sb5 and Cs(V0.86Ta0.14)3Sb5-using ultrahigh-resolution and low-temperature angle-resolved photoemission spectroscopy. Remarkably, such a gap structure is robust to the appearance or absence of charge order in the normal state, tuned by isovalent Nb/Ta substitutions of V. Our comprehensive characterizations of the superconducting gap provide indispensable information on the electron pairing symmetry of kagome superconductors, and advance our understanding of the superconductivity and intertwined electronic orders in quantum materials.

PubMed Disclaimer

References

    1. Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951). - DOI
    1. Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012). - DOI
    1. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013). - PubMed - DOI
    1. Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013). - DOI
    1. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019). - DOI

Publication types

LinkOut - more resources