Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr;616(7958):686-690.
doi: 10.1038/s41586-023-05843-w. Epub 2023 Apr 26.

A ring-like accretion structure in M87 connecting its black hole and jet

Ru-Sen Lu  1   2   3 Keiichi Asada  4 Thomas P Krichbaum  5 Jongho Park  6   7 Fumie Tazaki  8   9 Hung-Yi Pu  6   10   11 Masanori Nakamura  6   12 Andrei Lobanov  13 Kazuhiro Hada  14   15 Kazunori Akiyama  16   17   18 Jae-Young Kim  13   7   19 Ivan Marti-Vidal  20   21 José L Gómez  22 Tomohisa Kawashima  23 Feng Yuan  24   25   26 Eduardo Ros  13 Walter Alef  13 Silke Britzen  13 Michael Bremer  27 Avery E Broderick  28   29   30 Akihiro Doi  31   32 Gabriele Giovannini  33   34 Marcello Giroletti  34 Paul T P Ho  6 Mareki Honma  9   35   36 David H Hughes  37 Makoto Inoue  6 Wu Jiang  24 Motoki Kino  18   38 Shoko Koyama  6   39 Michael Lindqvist  40 Jun Liu  13 Alan P Marscher  41 Satoki Matsushita  6 Hiroshi Nagai  35   18 Helge Rottmann  13 Tuomas Savolainen  13   42   43 Karl-Friedrich Schuster  27 Zhi-Qiang Shen  24   44 Pablo de Vicente  45 R Craig Walker  46 Hai Yang  24   26 J Anton Zensus  13 Juan Carlos Algaba  47 Alexander Allardi  48 Uwe Bach  13 Ryan Berthold  49 Dan Bintley  49 Do-Young Byun  7   50 Carolina Casadio  51   52 Shu-Hao Chang  6 Chih-Cheng Chang  53 Song-Chu Chang  53 Chung-Chen Chen  6 Ming-Tang Chen  54 Ryan Chilson  54 Tim C Chuter  49 John Conway  40 Geoffrey B Crew  17 Jessica T Dempsey  49   55 Sven Dornbusch  13 Aaron Faber  56 Per Friberg  49 Javier González García  45 Miguel Gómez Garrido  45 Chih-Chiang Han  6 Kuo-Chang Han  53 Yutaka Hasegawa  57 Ruben Herrero-Illana  58 Yau-De Huang  6 Chih-Wei L Huang  6 Violette Impellizzeri  59   60 Homin Jiang  6 Hao Jinchi  61 Taehyun Jung  7 Juha Kallunki  43 Petri Kirves  43 Kimihiro Kimura  62 Jun Yi Koay  6 Patrick M Koch  6 Carsten Kramer  27 Alex Kraus  13 Derek Kubo  54 Cheng-Yu Kuo  63 Chao-Te Li  6 Lupin Chun-Che Lin  64 Ching-Tang Liu  6 Kuan-Yu Liu  6 Wen-Ping Lo  6   65 Li-Ming Lu  53 Nicholas MacDonald  13 Pierre Martin-Cocher  6 Hugo Messias  58   66 Zheng Meyer-Zhao  6   55 Anthony Minter  67 Dhanya G Nair  68 Hiroaki Nishioka  6 Timothy J Norton  69 George Nystrom  54 Hideo Ogawa  57 Peter Oshiro  54 Nimesh A Patel  69 Ue-Li Pen  6 Yurii Pidopryhora  13   70 Nicolas Pradel  6 Philippe A Raffin  54 Ramprasad Rao  69 Ignacio Ruiz  71 Salvador Sanchez  71 Paul Shaw  6 William Snow  54 T K Sridharan  60   69 Ranjani Srinivasan  6   69 Belén Tercero  45 Pablo Torne  71 Efthalia Traianou  13   22 Jan Wagner  13 Craig Walther  49 Ta-Shun Wei  6 Jun Yang  40 Chen-Yu Yu  6
Affiliations

A ring-like accretion structure in M87 connecting its black hole and jet

Ru-Sen Lu et al. Nature. 2023 Apr.

Abstract

The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. High-resolution images of M87 at 3.5 mm obtained on 14–15 April 2018.
a, Uniformly weighted CLEAN (ref. ) image. The filled ellipse in the lower-left corner indicates the restoring beam, which is an elliptical Gaussian fitted to the main lobe of the synthesized beam (fullwidth at half-maximum = 79 μas × 37 μas; position angle = −63°). Contours show the source brightness in the standard radio convention of flux density per beam. The contour levels start at 0.5 mJy per beam and increase in steps of factors of 2. The peak flux density is 0.18 Jy per beam. b, The central region of the image as shown in a, but the image is now restored with a circular Gaussian beam of 37 μas size (fullwidth at half-maximum), corresponding to the minor axis of the elliptical beam in a. The peak flux density is 0.12 Jy per beam. The contour levels start at 0.4 mJy per beam and increase in steps of factors of 2. c, A magnification of the central core region using regularized maximum likelihood (RML) imaging methods. Contours start at 4% of the peak and increase in steps of factors of 2. The solid blue circle of diameter 64 μas denotes the measured size of the ring-like structure at 3.5 mm, which is approximately 50% larger than the EHT 1.3-mm ring with a diameter of 42 μas (dashed black circle). For each panel, the colour map denotes the brightness temperature T in kelvin, which is related to the flux density S in jansky as given in the equation T=λ2(2kBΩ)−1S, where λ is the wavelength, kB is the Boltzmann constant and Ω is the solid angle (shown on a square-root scale). The CLEAN images are the mean of the best-fitting images produced independently by team members, and the RML image is the mean of the optimal set of SMILI images (Supplementary Information section 3). dec, declination; RA, right ascension. Scale bars, 0.5  mas (a), 0.2 mas (b) and 50  μas (c).
Fig. 2
Fig. 2. RML images and model images at 3.5 mm and 1.3 mm.
af, RML images (a,d) and model images (b,c,e,f) obtained at 3.5 mm (ac) and 1.3 mm (df). a, The 3.5-mm image obtained on 14–15 April 2018 is the same as in Fig. 1c but shown on a linear brightness scale. b,e, The thermal synchrotron model from the accretion flow assumes synchrotron emission from electrons with a Maxwellian energy distribution. c,f, The non-thermal synchrotron model from the jet region assumes synchrotron emission from electrons with a power-law energy distribution. d, The 1.3-mm EHT image obtained on 11 April 2017, reconstructed with the publicly available data and imaging pipeline using the EHT-imaging library. Note that the differences in the azimuthal intensity distribution in the two observed images are probably because of time variability and/or blending effects with the underlying jet footpoints. Although the morphology of both models is consistent with the observations at 1.3 mm (e and f), the larger and thicker ring-like structure at 3.5 mm can be understood by the opacity effect at longer wavelengths, preferentially explained by thermal synchrotron absorption from the accretion flow region (b). For comparison, reconstructed and simulated images are convolved with a circular Gaussian beam of 27 μas (3.5 mm) and 10 μas (1.3 mm) and are shown in a linear colour scale. The blue circle denotes the measured ring diameter of 64 μas at 3.5 mm and 42 μas at 1.3 mm.
Fig. 3
Fig. 3. Jet collimation profile.
Red filled circles mark the measured jet transverse width for the observations reported here. The error bars (1σ) are within the symbols (see Supplementary Information section 8 for more details on measuring the jet width). Grey filled squares, dots and triangles denote previous measurements of the width on larger scales,,, for which a power-law fit with a fixed power-law index of 0.58 is shown by the dashed line. The vertical dashed line marks the position at which the intrinsic half-opening angle θ of the fitted parabolic jet equals the jet viewing angle of θv = 17° (that is, boundary condition for a down-the-pipe jet). The horizontal blue solid line marks the measured diameter of the ring at 3.5 mm, whereas the horizontal black dashed line marks the ring diameter measured with the EHT at 1.3 mm. In each case, the shaded area denotes the corresponding measurement uncertainty. The light-grey-shaded area denotes the outermost streamlines of the envelope of the parabolic jet from theoretical simulations (projected for θv = 17°; ref. ) that are anchored at the event horizon for a range of black hole spins (dimensionless spin parameters, a = 0.0–0.9). The lower and upper boundaries of this shaded area correspond to the highest (a = 0.9) and lowest (a = 0.0) spin, respectively. As the jet footpoint is anchored at the event horizon, some flattening of the jet width profile is expected near the black hole. This is further enhanced by geometrical projection effects in the region where the intrinsic jet half-opening angle (θ) is larger than the jet viewing angle (θv). The quasi-cylindrical shape in region I requires some change in the physical conditions to connect the innermost Blandford–Znajek jet from the event horizon to the upstream jet (region II).

Similar articles

  • Precessing jet nozzle connecting to a spinning black hole in M87.
    Cui Y, Hada K, Kawashima T, Kino M, Lin W, Mizuno Y, Ro H, Honma M, Yi K, Yu J, Park J, Jiang W, Shen Z, Kravchenko E, Algaba JC, Cheng X, Cho I, Giovannini G, Giroletti M, Jung T, Lu RS, Niinuma K, Oh J, Ohsuga K, Sawada-Satoh S, Sohn BW, Takahashi HR, Takamura M, Tazaki F, Trippe S, Wajima K, Akiyama K, An T, Asada K, Buttaccio S, Byun DY, Cui L, Hagiwara Y, Hirota T, Hodgson J, Kawaguchi N, Kim JY, Lee SS, Lee JW, Lee JA, Maccaferri G, Melis A, Melnikov A, Migoni C, Oh SJ, Sugiyama K, Wang X, Zhang Y, Chen Z, Hwang JY, Jung DK, Kim HR, Kim JS, Kobayashi H, Li B, Li G, Li X, Liu Z, Liu Q, Liu X, Oh CS, Oyama T, Roh DG, Wang J, Wang N, Wang S, Xia B, Yan H, Yeom JH, Yonekura Y, Yuan J, Zhang H, Zhao R, Zhong W. Cui Y, et al. Nature. 2023 Sep;621(7980):711-715. doi: 10.1038/s41586-023-06479-6. Epub 2023 Sep 27. Nature. 2023. PMID: 37758892
  • Jet-launching structure resolved near the supermassive black hole in M87.
    Doeleman SS, Fish VL, Schenck DE, Beaudoin C, Blundell R, Bower GC, Broderick AE, Chamberlin R, Freund R, Friberg P, Gurwell MA, Ho PT, Honma M, Inoue M, Krichbaum TP, Lamb J, Loeb A, Lonsdale C, Marrone DP, Moran JM, Oyama T, Plambeck R, Primiani RA, Rogers AE, Smythe DL, SooHoo J, Strittmatter P, Tilanus RP, Titus M, Weintroub J, Wright M, Young KH, Ziurys LM. Doeleman SS, et al. Science. 2012 Oct 19;338(6105):355-8. doi: 10.1126/science.1224768. Epub 2012 Sep 27. Science. 2012. PMID: 23019611
  • An origin of the radio jet in M87 at the location of the central black hole.
    Hada K, Doi A, Kino M, Nagai H, Hagiwara Y, Kawaguchi N. Hada K, et al. Nature. 2011 Sep 7;477(7363):185-7. doi: 10.1038/nature10387. Nature. 2011. PMID: 21901008
  • Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87^{*}.
    Davoudiasl H, Denton PB. Davoudiasl H, et al. Phys Rev Lett. 2019 Jul 12;123(2):021102. doi: 10.1103/PhysRevLett.123.021102. Phys Rev Lett. 2019. PMID: 31386502
  • Foundations of Black Hole Accretion Disk Theory.
    Abramowicz MA, Fragile PC. Abramowicz MA, et al. Living Rev Relativ. 2013;16(1):1. doi: 10.12942/lrr-2013-1. Epub 2013 Jan 14. Living Rev Relativ. 2013. PMID: 28179840 Free PMC article. Review.

Cited by

  • Space-qualifying silicon photonic modulators and circuits.
    Mao D, Chang L, Lee H, Yu AW, Maruca BA, Ullah K, Matthaeus WH, Krainak MA, Dong P, Gu T. Mao D, et al. Sci Adv. 2024 Jan 5;10(1):eadi9171. doi: 10.1126/sciadv.adi9171. Epub 2024 Jan 5. Sci Adv. 2024. PMID: 38181074 Free PMC article.
  • Precessing jet nozzle connecting to a spinning black hole in M87.
    Cui Y, Hada K, Kawashima T, Kino M, Lin W, Mizuno Y, Ro H, Honma M, Yi K, Yu J, Park J, Jiang W, Shen Z, Kravchenko E, Algaba JC, Cheng X, Cho I, Giovannini G, Giroletti M, Jung T, Lu RS, Niinuma K, Oh J, Ohsuga K, Sawada-Satoh S, Sohn BW, Takahashi HR, Takamura M, Tazaki F, Trippe S, Wajima K, Akiyama K, An T, Asada K, Buttaccio S, Byun DY, Cui L, Hagiwara Y, Hirota T, Hodgson J, Kawaguchi N, Kim JY, Lee SS, Lee JW, Lee JA, Maccaferri G, Melis A, Melnikov A, Migoni C, Oh SJ, Sugiyama K, Wang X, Zhang Y, Chen Z, Hwang JY, Jung DK, Kim HR, Kim JS, Kobayashi H, Li B, Li G, Li X, Liu Z, Liu Q, Liu X, Oh CS, Oyama T, Roh DG, Wang J, Wang N, Wang S, Xia B, Yan H, Yeom JH, Yonekura Y, Yuan J, Zhang H, Zhao R, Zhong W. Cui Y, et al. Nature. 2023 Sep;621(7980):711-715. doi: 10.1038/s41586-023-06479-6. Epub 2023 Sep 27. Nature. 2023. PMID: 37758892
  • Black-hole image reveals details of turmoil around the abyss.
    Castelvecchi D. Castelvecchi D. Nature. 2023 May;617(7959):14-15. doi: 10.1038/d41586-023-01442-x. Nature. 2023. PMID: 37101074 No abstract available.

References

    1. Yuan F, Narayan R. Host accretion flows around black holes. Annu. Rev. Astron. Astrophys. 2014;52:529–588. doi: 10.1146/annurev-astro-082812-141003. - DOI
    1. Blandford R, Meier D, Readhead A. Relativistic jets from active galactic nuclei. Annu. Rev. Astron. Astrophys. 2019;57:467–509. doi: 10.1146/annurev-astro-081817-051948. - DOI
    1. The Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 2019;875:L1. doi: 10.3847/2041-8213/ab0ec7. - DOI
    1. The Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 2019;875:L6. doi: 10.3847/2041-8213/ab1141. - DOI
    1. Kim J-Y, et al. The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale. Astron. Astrophys. 2018;616:A188. doi: 10.1051/0004-6361/201832921. - DOI

Publication types