Assessment of the atrial fibrillation burden in Holter electrocardiogram recordings using artificial intelligence
- PMID: 37101946
- PMCID: PMC10123500
- DOI: 10.1016/j.cvdhj.2023.01.003
Assessment of the atrial fibrillation burden in Holter electrocardiogram recordings using artificial intelligence
Abstract
Background: Emerging evidence indicates that a high atrial fibrillation (AF) burden is associated with adverse outcome. However, AF burden is not routinely measured in clinical practice. An artificial intelligence (AI)-based tool could facilitate the assessment of AF burden.
Objective: We aimed to compare the assessment of AF burden performed manually by physicians with that measured by an AI-based tool.
Methods: We analyzed 7-day Holter electrocardiogram (ECG) recordings of AF patients included in the prospective, multicenter Swiss-AF Burden cohort study. AF burden was defined as percentage of time in AF, and was assessed manually by physicians and by an AI-based tool (Cardiomatics, Cracow, Poland). We evaluated the agreement between both techniques by means of Pearson correlation coefficient, linear regression model, and Bland-Altman plot.
Results: We assessed the AF burden in 100 Holter ECG recordings of 82 patients. We identified 53 Holter ECGs with 0% or 100% AF burden, where we found a 100% correlation. For the remaining 47 Holter ECGs with an AF burden between 0.01% and 81.53%, Pearson correlation coefficient was 0.998. The calibration intercept was -0.001 (95% CI -0.008; 0.006), and the calibration slope was 0.975 (95% CI 0.954; 0.995; multiple R2 0.995, residual standard error 0.017). Bland-Altman analysis resulted in a bias of -0.006 (95% limits of agreement -0.042 to 0.030).
Conclusion: The assessment of AF burden with an AI-based tool provided very similar results compared to manual assessment. An AI-based tool may therefore be an accurate and efficient option for the assessment of AF burden.
Keywords: Artificial intelligence; Atrial fibrillation; Atrial fibrillation burden; Deep learning; Holter ECG; Machine learning.
© 2023 Heart.
Figures





References
-
- Colilla S., Crow A., Petkun W., Singer D.E., Simon T., Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112:1142–1147. - PubMed
-
- Hindricks G., Potpara T., Dagres N., et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42:373–498. - PubMed
-
- Kim M.H., Johnston S.S., Chu B.C., Dalal M.R., Schulman K.L. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ Cardiovasc Qual Outcomes. 2011;4:313–320. - PubMed
-
- Boriani G., Pettorelli D. Atrial fibrillation burden and atrial fibrillation type: clinical significance and impact on the risk of stroke and decision making for long-term anticoagulation. Vascul Pharmacol. 2016;83:26–35. - PubMed
LinkOut - more resources
Full Text Sources