Possible mitigating effect of adropin on lung injury in diabetic rats: Targeting the role of Rho A/Rho-associated kinase pathway
- PMID: 37103121
- DOI: 10.1002/biof.1955
Possible mitigating effect of adropin on lung injury in diabetic rats: Targeting the role of Rho A/Rho-associated kinase pathway
Abstract
This study evaluated possible mitigating effect of adropin on lung injury in diabetic rats, targeting role of Rho A/Rho-associated kinase pathway. Rats were allocated into four groups: control, adropin, diabetic, and diabetic+adropin groups. At the termination of the experiment, serum fasting glucose, insulin and adropin levels and insulin resistance were calculated. Wet/dry ratio, histopathological, immunohistochemical analyses, and relative real time gene expression of lung tissue was determined. Interleukin-6, tumor necrosis factor alpha, malondialdehyde, 8-Oxo-2'-deoxyguanosine, reduced glutathione, superoxide dismutase, Bcl-2, BAX, myeloperoxidase, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and transforming growth factor-β were determined in lung tissue. Adropin treatment in diabetic rats notably attenuated hyperglycemia and insulin resistance. Also, it mitigated diabetic lung injury via suppressing effect on Rho A/ROCK pathway, apoptosis, inflammatory reactions, oxidative stress, and fibrosis of lung tissue. Adropin can be considered as a promising therapeutic agent for treating diabetic lung injury.
Keywords: Rho A/ROCK pathway; adropin; diabetic; hyperglycemia; lung injury.
© 2023 International Union of Biochemistry and Molecular Biology.
References
REFERENCES
-
- Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598-612.
-
- Gao L, Zhang W, Yang L, Fan H, Olatunji OJ. Stink bean (Parkia speciosa) empty pod: a potent natural antidiabetic agent for the prevention of pancreatic and hepatorenal dysfunction in high fat diet/streptozotocin-induced type 2 diabetes in rats. Arch Physiol Biochem. 2023;129(1):261-7.
-
- Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic microvascular disease: an endocrine society scientific statement. J Clin Endocrinol Metab. 2017;102(12):4343-410.
-
- Song P, Sun C, Li J, Long T, Yan Y, Qin H, et al. Tiliacora triandra extract and its major constituent attenuates diabetic kidney and testicular impairment by modulating redox imbalance and pro-inflammatory responses in rats. J Sci Food Agric. 2021;101(4):1598-608.
-
- Kolahian S, Leiss V, Nürnberg B. Diabetic lung disease: fact or fiction? Rev Endocr Metab Disord. 2019;20(3):303-19.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
