Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun:159:106970.
doi: 10.1016/j.compbiomed.2023.106970. Epub 2023 Apr 21.

Identifying fetal status with fetal heart rate: Deep learning approach based on long convolution

Affiliations

Identifying fetal status with fetal heart rate: Deep learning approach based on long convolution

Zhixin Zhou et al. Comput Biol Med. 2023 Jun.

Abstract

CTG (Cardiotocography) is an effective tool for fetal status assessment. Clinically, doctors mainly evaluate the health of fetus by observing FHR (fetal heart rate). The rapid development of Artificial Intelligence has led realization of computer-aided CTG technology, Intelligent CTG classification based on FHR is a fundamental component of these technologies. Its implementation can provide doctors with auxiliary decisions. Most of existing FHR classification methods are based on combing different deep learning models, such as CNN (Convolutional Neural Network), LSTM (Long short-term memory) and Transformer. However, these studies ignore the balance of positive and negative samples in dataset and the matching degree between model and FHR classification task, which reduces the classification accuracy. In this paper, we mainly discuss two major problems in previous FHR classification studies: reduce class imbalance and select appropriate convolution kernel. To address above two problems, we propose a data augmentation method based on ECMN (Edge Clipping and Multiscale Noise) to resolve class imbalance. Subsequently, we introduce a one-dimensional long convolutional layer, which use trend area to calculate the appropriate convolution kernel. Based on appropriate convolution kernel, an improved residual structure with attention mechanism named TGLCN (Trend-Guided Long Convolution Network) is proposed to improve FHR classification accuracy. Finally, horizontal and longitudinal experiments show that the TGLCN obtains high classification accuracy and speed of parameter adjustment.

Keywords: Cardiotocography; Data augmentation; Fetal heart rate; Long convolution; Trend.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources