Targeting B7-H3-A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment
- PMID: 37110590
- PMCID: PMC10145344
- DOI: 10.3390/molecules28083356
Targeting B7-H3-A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment
Abstract
Recent scientific data recognize the B7-H3 checkpoint molecule as a potential target for immunotherapy of pediatric solid tumors (PSTs). B7-H3 is highly expressed in extracranial PSTs such as neuroblastoma, rhabdomyosarcoma, nephroblastoma, osteosarcoma, and Ewing sarcoma, whereas its expression is absent or very low in normal tissues and organs. The influence of B7-H3 on the biological behavior of malignant solid neoplasms of childhood is expressed through different molecular mechanisms, including stimulation of immune evasion and tumor invasion, and cell-cycle disruption. It has been shown that B7-H3 knockdown decreased tumor cell proliferation and migration, suppressed tumor growth, and enhanced anti-tumor immune response in some pediatric solid cancers. Antibody-drug conjugates targeting B7-H3 exhibited profound anti-tumor effects against preclinical models of pediatric solid malignancies. Moreover, B7-H3-targeting chimeric antigen receptor (CAR)-T cells demonstrated significant in vivo activity against different xenograft models of neuroblastoma, Ewing sarcoma, and osteosarcoma. Finally, clinical studies demonstrated the potent anti-tumor activity of B7-H3-targeting antibody-radioimmunoconjugates in metastatic neuroblastoma. This review summarizes the established data from various PST-related studies, including in vitro, in vivo, and clinical research, and explains all the benefits and potential obstacles of targeting B7-H3 by novel immunotherapeutic agents designed to treat malignant extracranial solid tumors of childhood.
Keywords: B7-H3; anticancer agents; immunotherapy; pediatric solid tumors; targeted therapy.
Conflict of interest statement
The authors declare no conflict of interest.
References
-
- World Health Organization . CureAll Framework: WHO Global Initiative for Childhood Cancer: Increasing Access, Advancing Quality, Saving Lives. World Health Organization; Geneva, Switzerland: 2021.
-
- Majzner R.G., Theruvath J.L., Nellan A., Heitzeneder S., Cui Y., Mount C.W., Rietberg S.P., Linde M.H., Xu P., Rota C., et al. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clin. Cancer Res. 2019;25:2560–2574. doi: 10.1158/1078-0432.CCR-18-0432. - DOI - PMC - PubMed
-
- Kurmasheva R., Mosse Y.P., Pozo V.D., Earley E.J., Erickson S.W., Groff D., Kolb E.A., Krytska K., Smith M.A., Tsang M., et al. Testing of B7-H3 targeting antibody-drug conjugate (ADC) MGC018 in models of pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC) J. Clin. Oncol. 2021;39:10037. doi: 10.1200/JCO.2021.39.15_suppl.10037. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
