The BJUI Editorial Team's view on artificial intelligence and machine learning
- PMID: 37113110
- DOI: 10.1111/bju.16024
The BJUI Editorial Team's view on artificial intelligence and machine learning
References
-
- Boulenger de Hauteclocque A, Ferrer L, Ambrosetti D et al. Machine-learning approach for prediction of pT3a upstaging and outcomes of localized renal cell carcinoma (UroCCR-15). BJU Int 2023. https://doi.org/10.1111/bju.15959
-
- Khene Z-E, Kutikov A, Campi R. The promise and pitfalls of renal-izing the potential of artificial intelligence. BJU Int 2023. https://doi.org/10.1111/bju.16016
-
- He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019; 25: 30-6
-
- Wong A, Otles E, Donnelly JP et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med 2021; 181: 1065-70
-
- Roberts M, Driggs D, Thorpe M et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 2021; 3: 199-217
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
