Increasing dominance of Indian Ocean variability impacts Australian wheat yields
- PMID: 37117884
- DOI: 10.1038/s43016-022-00613-9
Increasing dominance of Indian Ocean variability impacts Australian wheat yields
Abstract
The relationships between crop productivity and climate variability drivers are often assumed to be stationary over time. However, this may not be true in a warming climate. Here we use a crop model and a machine learning algorithm to demonstrate the changing impacts of climate drivers on wheat productivity in Australia. We find that, from the end of the nineteenth century to the 1980s, wheat productivity was mainly subject to the impacts of the El Niño Southern Oscillation. Since the 1990s, the impacts from the El Niño Southern Oscillation have been decreasing, but those from the Indian Ocean Dipole have been increasing. The warming climate has brought more occurrences of positive Indian Ocean Dipole events, resulting in severe yield reductions in recent decades. Our findings highlight the need to adapt seasonal forecasting to the changing impacts of climate variability to inform the management of climate-induced yield losses.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
References
-
- Osborne, T., Rose, G. & Wheeler, T. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric. For. Meteorol. 170, 183–194 (2013).
-
- Ashok, K., Guan, Z. & Yamagata, T. Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett. 30, 1821 (2003).
-
- Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).
Publication types
LinkOut - more resources
Full Text Sources
