Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems
- PMID: 37118103
- DOI: 10.1038/s41570-020-00233-6
Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems
Abstract
The membrane proteins found in nature control many important cellular functions, including signal transduction and transmembrane ion transport, and these, in turn, are regulated by external stimuli, such as small molecules, membrane potential and light. Membrane proteins also find technological applications in fields ranging from optogenetics to synthetic biology. Synthetic supramolecular analogues have emerged as a complementary method to engineer functional membranes. This Review describes stimuli-responsive supramolecular systems developed for the control of ion transport, signal transduction and catalysis in lipid-bilayer-membrane systems. Recent advances towards achieving spatio-temporal control over activity in artificial and living cells are highlighted. Current challenges, the scope, limitations and future potential to exploit supramolecular systems for engineering stimuli-responsive lipid-bilayer membranes are discussed.
© 2020. Springer Nature Limited.
References
-
- Yeagle, P. L. The Structure of Biological Membranes (CRC Press, 2011).
-
- Krauss, G. Biochemistry of Signal Transduction and Regulation (Wiley, 2006).
Publication types
LinkOut - more resources
Full Text Sources
