Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 28;25(3):48.
doi: 10.1208/s12248-023-00812-7.

Physiologically Based Pharmacokinetic Modeling to Characterize the Effect of Molecular Charge on Whole-Body Disposition of Monoclonal Antibodies

Affiliations

Physiologically Based Pharmacokinetic Modeling to Characterize the Effect of Molecular Charge on Whole-Body Disposition of Monoclonal Antibodies

Shufang Liu et al. AAPS J. .

Abstract

Motivated by a series of work demonstrating the effect of molecular charge on antibody pharmacokinetics (PK), physiological-based pharmacokinetic (PBPK) models are emerging that relate in silico calculated charge or in vitro measures of polyspecificity to antibody PK parameters. However, only plasma data has been used for model development in these studies, leading to unvalidated assumptions. Here, we present an extended platform PBPK model for antibodies that incorporate charge-dependent endothelial cell pinocytosis rate and nonspecific off-target binding in the interstitial space and on circulating blood cells, to simultaneously characterize whole-body disposition of three antibody charge variants. Predictive potential of various charge metrics was also explored, and the difference between positive charge patches and negative charge patches (i.e., PPC-PNC) was used as the charge parameter to establish quantitative relationships with nonspecific binding affinities and endothelial cell uptake rate. Whole-body disposition of these charge variants was captured well by the model, with less than 2-fold predictive error in area under the curve of most plasma and tissue PK data. The model also predicted that with greater positive charge, nonspecific binding was more substantial, and pinocytosis rate increased especially in brain, heart, kidney, liver, lung, and spleen, but remained unchanged in adipose, bone, muscle, and skin. The presented PBPK model contributes to our understanding of the mechanisms governing the disposition of charged antibodies and can be used as a platform to guide charge engineering based on desired plasma and tissue exposures.

Keywords: PPC-PNC; antibody charge; antibody pharmacokinetics (PK); physiologically based pharmacokinetic (PBPK) modeling; quantitative structure-pharmacokinetic relationship (QSPKR); tissue distribution.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Gupta P, Makowski EK, Kumar S, Zhang Y, Scheer JM, Tessier PM. Antibodies with weakly basic isoelectric points minimize trade-offs between formulation and physiological colloidal properties. Mol Pharm. 2022;19(3):775–87. https://doi.org/10.1021/acs.molpharmaceut.1c00373 . - DOI - PubMed - PMC
    1. Dostalek M, Prueksaritanont T, Kelley RF. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. MAbs. 2017;9(5):756–66. https://doi.org/10.1080/19420862.2017.1323160 . - DOI - PubMed - PMC
    1. Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci Adv. 2020;6(32):eabb0372. https://doi.org/10.1126/sciadv.abb0372 . - DOI - PubMed - PMC
    1. Jain T, Sun TW, Durand S, Hall A, Houston NR, Nett JH, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci USA. 2017;114(5):944–9. https://doi.org/10.1073/pnas.1616408114 . - DOI - PubMed - PMC
    1. Makowski EK, Wu L, Gupta P, Tessier PM. Discovery-stage identification of drug-like antibodies using emerging experimental and computational methods. MAbs. 2021;13(1):1895540. https://doi.org/10.1080/19420862.2021.1895540 . - DOI - PubMed - PMC

Publication types

Substances

LinkOut - more resources