Stimulation-induced respiratory enhancement in corticothalamic regions
- PMID: 37119434
- DOI: 10.1111/epi.17635
Stimulation-induced respiratory enhancement in corticothalamic regions
Erratum in
-
Correction to "Stimulation-induced respiratory enhancement in corticothalamic regions".Epilepsia. 2024 Jun;65(6):1806-1807. doi: 10.1111/epi.17997. Epub 2024 May 4. Epilepsia. 2024. PMID: 38703092 No abstract available.
Abstract
Objective: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing.
Methods: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline.
Results: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04).
Significance: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.
Keywords: cortical stimulation; enhancement of breathing; thalamic stimulation.
© 2023 International League Against Epilepsy.
References
REFERENCES
-
- Ficker DM, So EL, Shen WK, Annegers JF, O'Brien PC, Cascino GD, et al. Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology. 1998;51(5):1270-4.
-
- Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 2013;12(10):966-77.
-
- Lacuey N, Hampson JP, Harper RM, Miller JP, Lhatoo S. Limbic and paralimbic structures driving ictal central apnea. Neurology. 2019;92(7):e655-e69.
-
- Nobis WP, Schuele S, Templer JW, Zhou G, Lane G, Rosenow JM, et al. Amygdala-stimulation-induced apnea is attention and nasal-breathing dependent. Ann Neurol. 2018;83(3):460-71.
-
- Rhone AE, Kovach CK, Harmata GI, Sullivan AW, Tranel D, Ciliberto MA, et al. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight. 2020;5(6):e134852.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
