Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Aug 10:885:163727.
doi: 10.1016/j.scitotenv.2023.163727. Epub 2023 Apr 28.

Microbial inactivation kinetics of UV LEDs and effect of operating conditions: A methodological critical analysis

Affiliations
Review

Microbial inactivation kinetics of UV LEDs and effect of operating conditions: A methodological critical analysis

N Itani et al. Sci Total Environ. .

Abstract

Tiny ultraviolet (UV) light-emitting diodes (LED)s that are replacing the conventional energy-intensive mercury UV lamps have gained interest since the early 2000's because of their promising advantages. In the context of microbial inactivation (MI) of waterborne microbes, disinfection kinetics of those LEDs exhibited variations among studies, in terms of varying the UV wavelength, the exposure time, power, and dose (UV fluence) as well as other operational conditions. While reported results may appear contradictory when examined separately, they probably are not when analyzed collectively. As such, in this study, we carry out a quantitative collective regression analysis of the reported data to shed light on the kinetics of MI by the emerging UV LEDs technology alongside the effects of varying operational conditions. The main goal is to identify dose response requirements for UV LEDs and to compare them to traditional UV lamps in addition to ascertaining optimal settings that could help in achieving the optimal inactivation outcome for comparable UV doses. The analysis showed that kinetically, UV LEDs are as effective as conventional mercury lamps for water disinfection, and at times more effective, especially for UV resistant microbes. We defined the maximal efficiency at two wavelengths, 260-265 nm and 280 nm, among a wide range of available LED wavelengths. We also defined the UV fluence per log inactivation of tested microbes. At the operational level, we identified existing gaps and developed a framework for a comprehensive analysis program for future needs.

Keywords: Fluence; Kinetics; Microbial inactivation; Operational conditions; UV LED; Water disinfection.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources