Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 5:950:175759.
doi: 10.1016/j.ejphar.2023.175759. Epub 2023 Apr 28.

Ergothioneine improves myocardial remodeling and heart function after acute myocardial infarction via S-glutathionylation through the NF-ĸB dependent Wnt5a-sFlt-1 pathway

Affiliations

Ergothioneine improves myocardial remodeling and heart function after acute myocardial infarction via S-glutathionylation through the NF-ĸB dependent Wnt5a-sFlt-1 pathway

Rui Duan et al. Eur J Pharmacol. .

Abstract

Myocardial infarction (MI) remains the leading cause of cardiovascular death worldwide. Studies have shown that soluble fms-like tyrosine kinase-1 (sFlt-1) has a harmful effect on the heart after MI. However, ergothioneine (ERG) has been shown to have protective effects in rats with preeclampsia by reducing circulating levels of sFlt-1. In this study, we aimed to investigate the mechanism by which ERG protects the heart after MI in rats. Our results indicate that treatment with 10 mg/kg ERG for 7 days can improve cardiac function as determined by echocardiography. Additionally, ERG can reduce the size of the damaged area, prevent heart remodeling, fibrosis, and reduce cardiomyocyte death after MI. To explain the mechanism behind the cardioprotective effects of ERG, we conducted several experiments. We observed a significant reduction in the expression of monocyte chemoattractant protein-1 (MCP-1), p65, and p-p65 proteins in heart tissues of ERG-treated rats compared to the control group. ELISA results also showed that ERG significantly reduced plasma levels of sFlt-1. Using Glutaredoxin-1 (GLRX) and CD31 immunofluorescence, we found that GLRX was expressed in clusters in the myocardial tissue surrounding the coronary artery, and ERG can reduce the expression of GLRX caused by MI. In vitro experiments using a human coronary artery endothelial cell (HCAEC) hypoxia model confirmed that ERG can reduce the expression of sFlt-1, GLRX, and Wnt5a. These findings suggest that ERG protects the heart from MI damage by reducing s-glutathionylation through the NF-ĸB-dependent Wnt5a-sFlt-1 pathway.

Keywords: Ergothioneine; Glutaredoxin-1; Myocardial infarction; Soluble fms-like tyrosine kinase-1; Wnt5a.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.