Mapping the global distribution of invasive pest Drosophila suzukii and parasitoid Leptopilina japonica: implications for biological control
- PMID: 37123003
- PMCID: PMC10135410
- DOI: 10.7717/peerj.15222
Mapping the global distribution of invasive pest Drosophila suzukii and parasitoid Leptopilina japonica: implications for biological control
Abstract
Insect pest invasions cause significant damage to crop yields, and the resultant economic losses are truly alarming. Climate change and trade liberalization have opened new ways of pest invasions. Given the consumer preference towards organic agricultural products and environment-friendly nature of natural pest control strategies, biological control is considered to be one of the potential options for managing invasive insect pests. Drosophila suzukii (Drosophilidae) is an extremely damaging fruit pest, demanding development of effective and sustainable biological control strategies. In this study, we assessed the potential of the parasitoid Leptopilina japonica (Figitidae) as a biocontrol agent for D. suzukii using ecological niche modeling approaches. We developed global-scale models for both pest and parasitoid to identify four components necessary to derive a niche based, target oriented prioritization approach to plan biological control programs for D. suzukii: (i) potential distribution of pest D. suzukii, (ii) potential distribution of parasitoid L. japonica, (iii) the degree of overlap in potential distributions of pest and parasitoid, and (iv) biocontrol potential of this system for each country. Overlapping suitable areas of pest and parasitoid were identified at two different thresholds and at the most desirable threshold (E = 5%), potential for L. japonica mediated biocontrol management existed in 125 countries covering 1.87 × 107 km2, and at the maximum permitted threshold (E = 10%), land coverage was reduced to 1.44 × 107 km2 in 121 countries. Fly pest distributional information as a predictor variable was not found to be improving parasitoid model performance, and globally, only in half of the countries, >50% biocontrol coverage was estimated. We therefore suggest that niche specificities of both pest and parasitoid must be included in site-specific release planning of L. japonica for effective biocontrol management aimed at D. suzukii. This study can be extended to design cost-effective pre-assessment strategies for implementing any biological control management program.
Keywords: Biological control; Drosophila suzukii; Ecological niche modeling; Invasion; Leptopilina japonica; Parasitoid; Pest.
©2023 Nair and Peterson.
Conflict of interest statement
The authors declare there are no competing interests.
Figures




Similar articles
-
Survey on Drosophila suzukii and Ceratitis capitata (Diptera: Drosophilidae, Tephritidae) and Associated Eucoilinae Species (Hymenoptera: Figitidae) in Northwestern Argentina. First Record of Dicerataspis grenadensis and Leptopilina boulardi as Parasitoids of D. suzukii.Neotrop Entomol. 2024 Apr;53(2):200-215. doi: 10.1007/s13744-023-01112-7. Epub 2024 Jan 16. Neotrop Entomol. 2024. PMID: 38228819
-
Temporal fluctuations and geographic distributions of Leptopilina (Hymenoptera: Figitidae) species in North Carolina: implications for biological control of Drosophila suzukii (Diptera: Drosophilidae).J Econ Entomol. 2025 Jul 10:toaf152. doi: 10.1093/jee/toaf152. Online ahead of print. J Econ Entomol. 2025. PMID: 40635500
-
Resident Hymenopteran Parasitoids with Potential Drosophilid Associations in Andean North Patagonia: Implications for the Biological Control of the Spotted Wing Drosophila.Neotrop Entomol. 2024 Feb;53(1):18-28. doi: 10.1007/s13744-023-01083-9. Epub 2023 Sep 26. Neotrop Entomol. 2024. PMID: 37752294
-
Drosophila suzukii in Southern Neotropical Region: Current Status and Future Perspectives.Neotrop Entomol. 2017 Dec;46(6):591-605. doi: 10.1007/s13744-017-0554-7. Epub 2017 Aug 30. Neotrop Entomol. 2017. PMID: 28852987 Review.
-
Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example.Evol Appl. 2018 Jun 14;11(9):1473-1497. doi: 10.1111/eva.12648. eCollection 2018 Oct. Evol Appl. 2018. PMID: 30344621 Free PMC article. Review.
Cited by
-
Wing spot in a tropical and a temperate drosophilid: C = C enrichment and conserved thermal response.BMC Ecol Evol. 2025 Jan 23;25(1):13. doi: 10.1186/s12862-024-02333-z. BMC Ecol Evol. 2025. PMID: 39849363 Free PMC article.
-
An evaluation of the ecological niche of Orf virus (Poxviridae): Challenges of distinguishing broad niches from no niches.PLoS One. 2024 Jan 18;19(1):e0293312. doi: 10.1371/journal.pone.0293312. eCollection 2024. PLoS One. 2024. PMID: 38236902 Free PMC article.
-
Predicting Range Shifts of Five Alnus (Betulaceae) Species in China Under Future Climate Scenarios.Plants (Basel). 2025 May 24;14(11):1597. doi: 10.3390/plants14111597. Plants (Basel). 2025. PMID: 40508272 Free PMC article.
-
Differential Coding of Fruit, Leaf, and Microbial Odours in the Brains of Drosophila suzukii and Drosophila melanogaster.Insects. 2025 Jan 15;16(1):84. doi: 10.3390/insects16010084. Insects. 2025. PMID: 39859665 Free PMC article.
-
Globally suitable areas for Lycorma delicatula based on an optimized Maxent model.Ecol Evol. 2024 Sep 20;14(9):e70252. doi: 10.1002/ece3.70252. eCollection 2024 Sep. Ecol Evol. 2024. PMID: 39310735 Free PMC article.
References
-
- Abram PK, Franklin MT, Hueppelsheuser T, Carrillo J, Grove E, Eraso P, Acheampong S, Keery L, Girod P, Tsuruda M, Clausen M, Buffington ML, Moffat CE. Adventive larval parasitoids reconstruct their close association with spotted-wing Drosophila in the invaded North American range. Environmental Entomology. 2022;51:670–678. doi: 10.1093/ee/nvac019. - DOI - PubMed
-
- Abram PK, McPherson AE, Kula R, Hueppelsheuser T, Thiessen J, Perlman SJ, Curtis CI, Fraser JL, Tam J, Carrillo J, Gates M, Scheffer S, Lewis M, Buffington M. New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. Journal of Hymenoptera Research. 2020;78:1–17. doi: 10.3897/jhr.78.55026. - DOI
-
- Adenle AA, Wedig K, Azadi H. Sustainable agriculture and food security in Africa: the role of innovative technologies and international organizations. Technology in Society. 2019;58:101143. doi: 10.1016/j.techsoc.2019.05.007. - DOI
-
- Agboka KM, Tonnang HEZ, Abdel-Rahman EM, Kimathi E, Mutanga O, Odindi J, Niassy S, Mohamed SA, Ekesi S. A systematic methodological approach to estimate the impacts of a classical biological control agent’s dispersal at landscape: application to fruit fly Bactrocera dorsalis and its endoparasitoid Fopius arisanus. Biological Control. 2022;175:105053. doi: 10.1016/j.biocontrol.2022.105053. - DOI
-
- Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 2015;38:541–545. doi: 10.1111/ecog.01132. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases