Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2023 May 9;120(19):e2208389120.
doi: 10.1073/pnas.2208389120. Epub 2023 May 1.

The effect of climate change on avian offspring production: A global meta-analysis

Lucyna Halupka  1 Debora Arlt  2   3 Jere Tolvanen  4 Alexandre Millon  5   6 Pierre Bize  7 Peter Adamík  8   9 Pascal Albert  10 Wayne J Arendt  11 Alexander V Artemyev  12 Vittorio Baglione  13 Jerzy Bańbura  14 Mirosława Bańbura  14 Emilio Barba  15 Robert T Barrett  16 Peter H Becker  17 Eugen Belskii  18 Mark Bolton  19 E Keith Bowers  20 Joël Bried  21   22 Lyanne Brouwer  23   24 Monika Bukacińska  25 Dariusz Bukaciński  25 Lesley Bulluck  26 Kate F Carstens  27 Inês Catry  28   29   30 Motti Charter  31 Anna Chernomorets  32 Rita Covas  27   28   30 Monika Czuchra  33 Donald C Dearborn  34   35 Florentino de Lope  36 Adrián S Di Giacomo  37 Valery C Dombrovski  38 Hugh Drummond  39 Michael J Dunn  40 Tapio Eeva  41 Louise M Emmerson  42 Yngve Espmark  43 Juan A Fargallo  44 Sergey I Gashkov  45 Elena Yu Golubova  46 Michael Griesser  47   48   49 Michael P Harris  50 Jeffrey P Hoover  51 Zuzanna Jagiełło  52 Patrik Karell  53   54 Janusz Kloskowski  52 Walter D Koenig  55   56 Heikki Kolunen  57 Małgorzata Korczak-Abshire  58 Erkki Korpimäki  41 Indrikis Krams  59   60   61 Miloš Krist  8   9 Sonja C Krüger  62   63 Boris D Kuranov  64 Xavier Lambin  65 Michael P Lombardo  66 Andrey Lyakhov  18 Alfonso Marzal  36 Anders P Møller  67 Verónica C Neves  21 Jan Tøttrup Nielsen  68 Alexander Numerov  69 Beata Orłowska  1 Daniel Oro  70 Markus Öst  71   72 Richard A Phillips  40 Hannu Pietiäinen  73 Vicente Polo  74 Jiří Porkert  75 Jaime Potti  76 Hannu Pöysä  77 Thierry Printemps  6 Jouke Prop  78 Petra Quillfeldt  79 Jaime A Ramos  80 Pierre-Alain Ravussin  81 Robert N Rosenfield  82 Alexandre Roulin  83 Dustin R Rubenstein  84 Irina E Samusenko  32 Denis A Saunders  85 Michael Schaub  65   86 Juan C Senar  87 Fabrizio Sergio  76 Tapio Solonen  88 Diana V Solovyeva  46 Janusz Stępniewski  89 Paul M Thompson  90 Marcin Tobolka  52   91 János Török  92   93 Martijn van de Pol  94   95 Louis Vernooij  94 Marcel E Visser  94 David F Westneat  96 Nathaniel T Wheelwright  97 Jarosław Wiącek  98 Karen L Wiebe  99 Andrew G Wood  40 Andrzej Wuczyński  100 Dariusz Wysocki  101 Markéta Zárybnická  102 Antoni Margalida  103   104 Konrad Halupka  33
Affiliations
Meta-Analysis

The effect of climate change on avian offspring production: A global meta-analysis

Lucyna Halupka et al. Proc Natl Acad Sci U S A. .

Abstract

Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to reproductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young.

Keywords: birds; climate change; meta-analysis; offspring production.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interest.

Figures

Fig. 1.
Fig. 1.
Distribution of sampling study areas around the world. Overlapping study areas result in darker dots.
Fig. 2.
Fig. 2.
Change (±95% confidence limits) in mean number of offspring per female, measured in SD per year, in 201 populations of 104 species. Results were ranked from most negative to most positive. Numbers on the graph refer to population identifiers in SI Appendix, Table S1. The inset shows the frequency distribution of the effect sizes with a normal curve overlay.
Fig. 3.
Fig. 3.
Beta coefficients (±95% confidence limits) of univariate meta-regressions in which standardized change in mean annual number of offspring per female was predicted by life history, demographic, ecological, and climatic variables. In all models, phylogenetic correlations along with identifiers of populations and species were included as random effects. Predictors expressed as a rate of change per year are shown as Δ. Note the different scales on each part of the plot.
Fig. 4.
Fig. 4.
Trends in offspring production and nest success. Some redundant axis labels have been pruned to reduce visual clutter. (A) Raw data of change in the number of offspring female−1 season−1 in standard deviations per year and change in nest success (percentage points per year) regressed on life history traits and changes in local temperatures. Temperatures refer to the nestling period (upper plot) and prelaying period (lower plot). (B) Heatmaps visualizing the interactive effect of body mass and changes in local temperatures on the predicted change in mean number of offspring per female, expressed in SD per year, and represented by contours and colors. The bar graphs show the results of a sensitivity analysis. (C) Heatmap of predicted change in nest success, expressed in percentage points per year, with the results of a sensitivity analysis. The models in B and C are described in Table 2.

References

    1. IPCC, Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, Masson-Delmotte V., et al., Eds. (Cambridge University Press, Cambridge, UK and New York, NY, 2021), in press. 10.1017/9781009157896. - DOI
    1. Jylhä K., et al. , Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim. Society 2, 148–167 (2010).
    1. Parmesan C., Yohe G., A globally coherent fingerprint of climate change impacts across natural ecosystems. Nature 421, 37–42 (2003). - PubMed
    1. Dunn P. O., Møller A. P., Effects of climate change on birds (Oxford University Press, Oxford, New York, ed. 2, 2019).
    1. Usui T., Butchart S. H. M., Phillimore A. B., Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis. J. Anim. Ecol. 86, 250–261 (2017). - PMC - PubMed

Publication types