Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun;25(6):812-822.
doi: 10.1038/s41556-023-01137-5. Epub 2023 May 1.

Epigenetic programming defines haematopoietic stem cell fate restriction

Affiliations

Epigenetic programming defines haematopoietic stem cell fate restriction

Yiran Meng et al. Nat Cell Biol. 2023 Jun.

Abstract

Haematopoietic stem cells (HSCs) are multipotent, but individual HSCs can show restricted lineage output in vivo. Currently, the molecular mechanisms and physiological role of HSC fate restriction remain unknown. Here we show that lymphoid fate is epigenetically but not transcriptionally primed in HSCs. In multi-lineage HSCs that produce lymphocytes, lymphoid-specific upstream regulatory elements (LymUREs) but not promoters are preferentially accessible compared with platelet-biased HSCs that do not produce lymphoid cell types, providing transcriptionally silent lymphoid lineage priming. Runx3 is preferentially expressed in multi-lineage HSCs, and reinstating Runx3 expression increases LymURE accessibility and lymphoid-primed multipotent progenitor 4 (MPP4) output in old, platelet-biased HSCs. In contrast, platelet-biased HSCs show elevated levels of epigenetic platelet-lineage priming and give rise to MPP2 progenitors with molecular platelet bias. These MPP2 progenitors generate platelets with faster kinetics and through a more direct cellular pathway compared with MPP2s derived from multi-lineage HSCs. Epigenetic programming therefore predicts both fate restriction and differentiation kinetics in HSCs.

PubMed Disclaimer

Similar articles

Cited by

  • Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells.
    Carrelha J, Mazzi S, Winroth A, Hagemann-Jensen M, Ziegenhain C, Högstrand K, Seki M, Brennan MS, Lehander M, Wu B, Meng Y, Markljung E, Norfo R, Ishida H, Belander Strålin K, Grasso F, Simoglou Karali C, Aliouat A, Hillen A, Chari E, Siletti K, Thongjuea S, Mead AJ, Linnarsson S, Nerlov C, Sandberg R, Yoshizato T, Woll PS, Jacobsen SEW. Carrelha J, et al. Nat Immunol. 2024 Jun;25(6):1007-1019. doi: 10.1038/s41590-024-01845-6. Epub 2024 May 30. Nat Immunol. 2024. PMID: 38816617 Free PMC article.
  • An epitranscriptomic program maintains skeletal stem cell quiescence via a METTL3-FEM1B-GLI1 axis.
    Wang J, Liu W, Zhang T, Cui M, Gao K, Lu P, Yao S, Cao Z, Zheng Y, Tian W, Li Y, Yin R, Hu J, Han G, Liang J, Zhou F, Chai J, Zhang H. Wang J, et al. EMBO J. 2025 Apr;44(8):2263-2278. doi: 10.1038/s44318-025-00399-z. Epub 2025 Feb 27. EMBO J. 2025. PMID: 40016417 Free PMC article.
  • DNMT3A regulates murine megakaryocyte-biased hematopoietic stem cell fate decisions.
    Waldvogel SM, Camacho V, Fan D, Guzman AG, Garcia-Martell A, Khabusheva E, Pridgen JR, De La Fuente J, Rau R, Laidman AG, Barrachina MN, Carminita E, Courson JA, Williamson MR, Hsu JI, Chen CW, Reyes J, Pradhan S, Rumbaut RE, Burns AR, Deneen B, Su J, Machlus KR, Goodell MA. Waldvogel SM, et al. Blood Adv. 2025 May 13;9(9):2285-2299. doi: 10.1182/bloodadvances.2024015061. Blood Adv. 2025. PMID: 40048738 Free PMC article.
  • The heterogeneity of erythroid cells: insight at the single-cell transcriptome level.
    Wang J, Liang Y, Xu C, Gao J, Tong J, Shi L. Wang J, et al. Cell Tissue Res. 2024 Sep;397(3):179-192. doi: 10.1007/s00441-024-03903-9. Epub 2024 Jul 2. Cell Tissue Res. 2024. PMID: 38953986 Review.
  • Hematopoietic aging promotes cancer by fueling IL-1⍺-driven emergency myelopoiesis.
    Park MD, Le Berichel J, Hamon P, Wilk CM, Belabed M, Yatim N, Saffon A, Boumelha J, Falcomatà C, Tepper A, Hegde S, Mattiuz R, Soong BY, LaMarche NM, Rentzeperis F, Troncoso L, Halasz L, Hennequin C, Chin T, Chen EP, Reid AM, Su M, Cahn AR, Koekkoek LL, Venturini N, Wood-Isenberg S, D'souza D, Chen R, Dawson T, Nie K, Chen Z, Kim-Schulze S, Casanova-Acebes M, Swirski FK, Downward J, Vabret N, Brown BD, Marron TU, Merad M. Park MD, et al. Science. 2024 Oct 25;386(6720):eadn0327. doi: 10.1126/science.adn0327. Epub 2024 Oct 25. Science. 2024. PMID: 39236155 Free PMC article.

References

    1. Muller-Sieburg, C. E., Cho, R. H., Thoman, M., Adkins, B. & Sieburg, H. B. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100, 1302–1309 (2002). - PubMed - DOI
    1. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007). - PubMed - DOI
    1. Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013). - PubMed - DOI
    1. Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018). - PubMed - DOI
    1. Pei, W. et al. Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by PolyloxExpress barcoding. Cell Stem Cell 27, 383–395.e8 (2020). - PubMed - DOI

Publication types

MeSH terms