Understanding the Perceptions of Healthcare Researchers Regarding ChatGPT: A Study Based on Bidirectional Encoder Representation from Transformers (BERT) Sentiment Analysis and Topic Modeling
- PMID: 37129780
- DOI: 10.1007/s10439-023-03222-0
Understanding the Perceptions of Healthcare Researchers Regarding ChatGPT: A Study Based on Bidirectional Encoder Representation from Transformers (BERT) Sentiment Analysis and Topic Modeling
Abstract
In this study, we have used deep learning techniques to understand the perception of researchers in the healthcare sector about the recently introduced chat generative pre-trained transformer (ChatGPT). Ever since the launch of ChatGPT, there have been various debates over the usage of ChatGPT for research purposes. In this article, using the pre-trained BERT (Bidirectional Encoder Representations from Transformers) model, we performed sentiment analysis and topic modeling to analyze the social media posts of healthcare researchers to understand their emotions towards ChatGPT.
Keywords: ChatGPT; Deep learning; Health care research; Natural language processing; Perception.
© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
Similar articles
-
Can ChatGPT be Trusted for Consulting? Uncovering Doctor's Perceptions Using Deep Learning Techniques.Ann Biomed Eng. 2023 Oct;51(10):2116-2119. doi: 10.1007/s10439-023-03245-7. Epub 2023 May 19. Ann Biomed Eng. 2023. PMID: 37208451
-
A BERT Framework to Sentiment Analysis of Tweets.Sensors (Basel). 2023 Jan 2;23(1):506. doi: 10.3390/s23010506. Sensors (Basel). 2023. PMID: 36617101 Free PMC article.
-
Vaccine sentiment analysis using BERT + NBSVM and geo-spatial approaches.J Supercomput. 2023 May 7:1-31. doi: 10.1007/s11227-023-05319-8. Online ahead of print. J Supercomput. 2023. PMID: 37359330 Free PMC article.
-
Bidirectional Graphormer for Reactivity Understanding: Neural Network Trained to Reaction Atom-to-Atom Mapping Task.J Chem Inf Model. 2022 Jul 25;62(14):3307-3315. doi: 10.1021/acs.jcim.2c00344. Epub 2022 Jul 6. J Chem Inf Model. 2022. PMID: 35792579 Review.
-
The Expanding Role of ChatGPT (Chat-Generative Pre-Trained Transformer) in Neurosurgery: A Systematic Review of Literature and Conceptual Framework.Cureus. 2023 Aug 15;15(8):e43502. doi: 10.7759/cureus.43502. eCollection 2023 Aug. Cureus. 2023. PMID: 37719492 Free PMC article. Review.
Cited by
-
Powerful tool or too powerful? Early public discourse about ChatGPT across 4 million tweets.PLoS One. 2024 Mar 27;19(3):e0296882. doi: 10.1371/journal.pone.0296882. eCollection 2024. PLoS One. 2024. PMID: 38536805 Free PMC article.
-
Potential use of large language models for mitigating students' problematic social media use: ChatGPT as an example.World J Psychiatry. 2024 Mar 19;14(3):334-341. doi: 10.5498/wjp.v14.i3.334. eCollection 2024 Mar 19. World J Psychiatry. 2024. PMID: 38617990 Free PMC article.
-
Chinese Public Attitudes and Opinions on Health Policies During Public Health Emergencies: Sentiment and Topic Analysis.J Med Internet Res. 2024 Oct 28;26:e58518. doi: 10.2196/58518. J Med Internet Res. 2024. PMID: 39466313 Free PMC article.
-
College Students' Employability, Cognition, and Demands for ChatGPT in the AI Era Among Chinese Nursing Students: Web-Based Survey.JMIR Form Res. 2023 Dec 22;7:e50413. doi: 10.2196/50413. JMIR Form Res. 2023. PMID: 38133923 Free PMC article.
-
ChatGPT in medicine: A cross-disciplinary systematic review of ChatGPT's (artificial intelligence) role in research, clinical practice, education, and patient interaction.Medicine (Baltimore). 2024 Aug 9;103(32):e39250. doi: 10.1097/MD.0000000000039250. Medicine (Baltimore). 2024. PMID: 39121303 Free PMC article.
References
-
- Abdullah, M., A. Madain, and Y. Jararweh. ChatGPT: fundamentals, applications and social impacts. In: 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), 2022. https://doi.org/10.1109/snams58071.2022.10062688 .
-
- Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018, October 11. arXiv.org. https://arxiv.org/abs/1810.04805 .
-
- Dwivedi, Y. K., N. Kshetri, L. Hughes, E. L. Slade, A. Jeyaraj, A. K. Kar, A. M. Baabdullah, A. Koohang, V. Raghavan, M. Ahuja, H. Albanna, M. A. Albashrawi, A. S. Al-Busaidi, J. Balakrishnan, Y. Barlette, S. Basu, I. Bose, L. Brooks, D. Buhalis, and L. Carter. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 71:102642, 2023. https://doi.org/10.1016/j.ijinfomgt.2023.102642 . - DOI
-
- Grootendorst, M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. 2022. arXiv:2203.05794 [Cs]. https://arxiv.org/abs/2203.05794
-
- King, M. R. The future of AI in medicine: a perspective from a Chatbot. Ann. Biomed. Eng. 2022. https://doi.org/10.1007/s10439-022-03121-w . - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources