Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 11;14(18):4322-4326.
doi: 10.1021/acs.jpclett.3c00643. Epub 2023 May 3.

Poly(amidoamine) Dendrimer as an Interfacial Dipole Modification in Crystalline Silicon Solar Cells

Affiliations

Poly(amidoamine) Dendrimer as an Interfacial Dipole Modification in Crystalline Silicon Solar Cells

Thomas Tom et al. J Phys Chem Lett. .

Abstract

Poly(amidoamine) (PAMAM) dendrimers are used to modify the interface of metal-semiconductor junctions. The large number of protonated amines contributes to the formation of a dipole layer, which finally serves to form electron-selective contacts in silicon heterojunction solar cells. By modification of the work function of the contacts, the addition of the PAMAM dendrimer interlayer quenches Fermi level pinning, thus creating an ohmic contact between the metal and the semiconductor. This is supported by the observation of a low contact resistivity of 4.5 mΩ cm2, the shift in work function, and the n-type behavior of PAMAM dendrimer films on the surface of crystalline silicon. A silicon heterojunction solar cell containing the PAMAM dendrimer interlayer is presented, which achieved a power conversion efficiency of 14.5%, an increase of 8.3% over the reference device without the dipole interlayer.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(a) 3D molecular structure of the PAMAM G0 dendrimer: blue, nitrogen; gray, carbon; red, oxygen; and green, hydrogen. (b) Specific contact resistance for varying thickness of the PAMAM dendrimer as extracted from the TLM measurements. The inset displays the TLM contact schematics for the measurements.
Figure 2
Figure 2
(a) AFM image of the 1 nm thick PAMAM dendrimer film on c-Si (n) with RMS roughness of 0.09 nm. (b) Transmittance spectra of the same films on sapphire substrate, ranging from 200 to 1500 nm. The inset shows the corresponding Tauc plot, showing an optical band gap energy of 4.7 eV. (c) Analysis of the UPS spectra for the same films: work function. The UPS spectra corresponding to the reference c-Si (n) sample are displayed for the sake of comparison.
Figure 3
Figure 3
(a) Energy band diagram corresponding to the Si/PAMAM dendrimer/Al heterojunction. (b) JV characteristics of the PAMAM dendrimer-based solar cell (green) and the reference device without the PAMAM dendrimer interlayer (blue). The inset shows the architecture of the employed n-type silicon heterojunction cell integrated with a PAMAM dendrimer interlayer as the electron-selective contact.

References

    1. Wan Y.; Samundsett C.; Bullock J.; Allen T.; Hettick M.; Yan D.; Zheng P.; Zhang X.; Cui J.; McKeon J.; Javey A.; Cuevas A. Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells. ACS Appl. Mater. Interfaces 2016, 8 (23), 14671–14677. 10.1021/acsami.6b03599. - DOI - PubMed
    1. Gao P.; Yang Z.; He J.; Yu J.; Liu P.; Zhu J.; Ge Z.; Ye J. Dopant-Free and Carrier-Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives. Advanced Science 2018, 5, 1700547.10.1002/advs.201700547. - DOI - PMC - PubMed
    1. Wan L.; Zhang C.; Ge K.; Yang X.; Li F.; Yan W.; Xu Z.; Yang L.; Xu Y.; Song D.; Chen J. Conductive Hole-Selective Passivating Contacts for Crystalline Silicon Solar Cells. Adv. Energy Mater. 2020, 10 (16), 1903851.10.1002/aenm.201903851. - DOI
    1. Battaglia C.; de Nicolás S. M.; De Wolf S.; Yin X.; Zheng M.; Ballif C.; Javey A. Silicon Heterojunction Solar Cell with Passivated Hole Selective MoO x Contact. Appl. Phys. Lett. 2014, 104 (11), 113902.10.1063/1.4868880. - DOI
    1. Yu J.; Yu J.; Yu J.; Phang P.; Samundsett C.; Basnet R.; Neupan G. P.; Yang X.; Macdonald D. H.; Wan Y.; Yan D.; Ye J. Titanium Nitride Electron-Conductive Contact for Silicon Solar Cells by Radio Frequency Sputtering from a TiN Target. ACS Appl. Mater. Interfaces 2020, 12 (23), 26177–26183. 10.1021/acsami.0c04439. - DOI - PubMed