No abstract available
Keywords:
clustering; dilated cardiomyopathy; genetics; transcriptomics.
PubMed Disclaimer
Conflict of interest statement
Dr Hershberger has received grant support from the National Institutes of Health (grant R01HL128857). Dr Cowan has reported that he has no relationships relevant to the contents of this paper to disclose.
Comment on
- doi: 10.1016/j.jacbts.2022.10.010
References
-
-
Verdonschot J.A.J., Wang P., Derks K.W.J., et al. Clustering of cardiac transcriptome profiles reveals unique: subgroups of dilated cardiomyopathy patients. J Am Coll Cardiol Basic Trans Science. 2023;8(4):406–418.
-
PMC
-
PubMed
-
-
Jordan E., Peterson L., Ai T., et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation. 2021;144(1):7–19.
-
PMC
-
PubMed
-
-
Alimadadi A., Munroe P.B., Joe B., Cheng X. Meta-analysis of dilated cardiomyopathy using cardiac RNA-seq transcriptomic datasets. Genes. 2020;11(1):60.
-
PMC
-
PubMed
-
-
Liu L., Huang J., Liu Y., et al. Multiomics analysis of transcriptome, epigenome, and genome uncovers putative mechanisms for dilated cardiomyopathy. Biomed Res Int. 2021;2021
-
PMC
-
PubMed
-
-
van Beek D., Verdonschot J., Derks K., et al. Allele-specific expression analysis for complex genetic phenotypes applied to a unique dilated cardiomyopathy cohort. Sci Rep. 2023;13(1):564.
-
PMC
-
PubMed