Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun;45(16):3155-3161.
doi: 10.1080/09593330.2023.2210770. Epub 2023 May 15.

Characterization of low-density polyethylene (LDPE) films degraded using bacteria strains isolated from oil-contaminated soil

Affiliations

Characterization of low-density polyethylene (LDPE) films degraded using bacteria strains isolated from oil-contaminated soil

Godswill E Akhigbe et al. Environ Technol. 2024 Jun.

Abstract

This study assessed the low-density polyethylene (LDPE) film degradation potential of microorganisms isolated from oil-contaminated soil and also analyzed the morphological and chemical composition of LDPE films after the biodegradation period. The bacteria strains isolated from oil-contaminated soil were standardized and used to degrade the pretreated LDPE films in mineral salt media. Thereafter, they were incubated for 78 days at 37°C in an incubator shaker, and the degraded LDPE films were analyzed quantitatively and qualitatively (using scanning electron microscope (SEM) images and energy dispersal x-ray (EDX)). Isolates A32 and BTT4 amongst other bacteria isolates showed the highest LDPE film degradation activity, with a weight reduction of 71.80% and 89.72% respectively, and were identified using the 16S rRNA sequencing technique. The EDX results showed that LDPE film incubated with A32 has the highest reduction in carbon and nitrogen (23.8% and 44.9% respectively) when compared with the Control. However, LDPE film incubated with BTT4 had an increase in calcium and chlorine (139% and 40% respectively), when compared with the control. Similarly, the SEM images showed the appearance of pinholes, cracks and particles on the surfaces of LDPE films incubated with A32 and BTT4 contrary to the controls. A32 and BTT4 were identified as Proteus mirabilis (Accession number: MN124173.1) and Proteus mirabilis (Accession number: KY027145.1) respectively. Proteus mirabilis showed viable plastic biodegradation potentials and may be useful in the management of plastic waste, leading to a reduction in global plastic waste and a clean environment.

Keywords: Biodegradation; environment; microorganism; plastic waste; scanning electron microscope.

PubMed Disclaimer

LinkOut - more resources