Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 May 4;30(5):571-591.
doi: 10.1016/j.stem.2023.04.011.

Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation

Affiliations
Review

Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation

J Jeya Vandana et al. Cell Stem Cell. .

Abstract

Human pluripotent stem cells (hPSCs) and three-dimensional organoids have ushered in a new era for disease modeling and drug discovery. Over the past decade, significant progress has been in deriving functional organoids from hPSCs, which have been applied to recapitulate disease phenotypes. In addition, these advancements have extended the application of hPSCs and organoids for drug screening and clinical-trial safety evaluations. This review provides an overview of the achievements and challenges in using hPSC-derived organoids to conduct relevant high-throughput, high-contentscreens and drug evaluation. These studies have greatly enhanced our knowledge and toolbox for precision medicine.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests S.C. is the co-founders of OncoBeat, LLC. S.C. is a consultant of Vesalius Therapeutics. S.C is a member of the advisory board of Cell Stem Cell.

Figures

Figure 1
Figure 1
Strategies for using hPSC-derived organoids in disease modeling
Figure 2
Figure 2
Applications of hPSC-derived organoids for drug screening and evaluation
Figure 3
Figure 3
Innovations in hPSC culturing technologies and technological advancements

References

    1. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. - DOI - PubMed
    1. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. - DOI - PubMed
    1. Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526. - DOI - PubMed
    1. Hockemeyer D., Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016;18:573–586. doi: 10.1016/j.stem.2016.04.013. - DOI - PMC - PubMed
    1. Marsee A., Roos F.J.M., Verstegen M.M.A., HPB Organoid Consortium. Gehart H., de Koning E., Lemaigre F., Forbes S.J., Peng W.C., Huch M., et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell. 2021;28:816–832. doi: 10.1016/j.stem.2021.04.005. - DOI - PMC - PubMed

Publication types

LinkOut - more resources