Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Oct;33(10):7089-7098.
doi: 10.1007/s00330-023-09697-8. Epub 2023 May 6.

Semi-automated segmentation methods of SSTR PET for dosimetry prediction in refractory meningioma patients treated by SSTR-targeted peptide receptor radionuclide therapy

Affiliations
Review

Semi-automated segmentation methods of SSTR PET for dosimetry prediction in refractory meningioma patients treated by SSTR-targeted peptide receptor radionuclide therapy

Caroline Boursier et al. Eur Radiol. 2023 Oct.

Abstract

Objectives: Tumor dosimetry with somatostatin receptor-targeted peptide receptor radionuclide therapy (SSTR-targeted PRRT) by 177Lu-DOTATATE may contribute to improved treatment monitoring of refractory meningioma. Accurate dosimetry requires reliable and reproducible pretherapeutic PET tumor segmentation which is not currently available. This study aims to propose semi-automated segmentation methods to determine metabolic tumor volume with pretherapeutic 68Ga-DOTATOC PET and evaluate SUVmean-derived values as predictive factors for tumor-absorbed dose.

Methods: Thirty-nine meningioma lesions from twenty patients were analyzed. The ground truth PET and SPECT volumes (VolGT-PET and VolGT-SPECT) were computed from manual segmentations by five experienced nuclear physicians. SUV-related indexes were extracted from VolGT-PET and the semi-automated PET volumes providing the best Dice index with VolGT-PET (Volopt) across several methods: SUV absolute-value (2.3)-threshold, adaptative methods (Jentzen, Otsu, Contrast-based method), advanced gradient-based technique, and multiple relative thresholds (% of tumor SUVmax, hypophysis SUVmean, and meninges SUVpeak) with optimal threshold optimized. Tumor-absorbed doses were obtained from the VolGT-SPECT, corrected for partial volume effect, performed on a 360° whole-body CZT-camera at 24, 96, and 168 h after administration of 177Lu-DOTATATE.

Results: Volopt was obtained from 1.7-fold meninges SUVpeak (Dice index 0.85 ± 0.07). SUVmean and total lesion uptake (SUVmeanxlesion volume) showed better correlations with tumor-absorbed doses than SUVmax when determined with the VolGT (respective Pearson correlation coefficients of 0.78, 0.67, and 0.56) or Volopt (0.64, 0.66, and 0.56).

Conclusion: Accurate definition of pretherapeutic PET volumes is justified since SUVmean-derived values provide the best tumor-absorbed dose predictions in refractory meningioma patients treated by 177Lu-DOTATATE. This study provides a semi-automated segmentation method of pretherapeutic 68Ga-DOTATOC PET volumes to achieve good reproducibility between physicians.

Clinical relevance statement: SUVmean-derived values from pretherapeutic 68Ga-DOTATOC PET are predictive of tumor-absorbed doses in refractory meningiomas treated by 177Lu-DOTATATE, justifying to accurately define pretherapeutic PET volumes. This study provides a semi-automated segmentation of 68Ga-DOTATOC PET images easily applicable in routine.

Key points: • SUVmean-derived values from pretherapeutic 68Ga-DOTATOC PET images provide the best predictive factors of tumor-absorbed doses related to 177Lu-DOTATATE PRRT in refractory meningioma. • A 1.7-fold meninges SUVpeak segmentation method used to determine metabolic tumor volume on pretherapeutic 68Ga-DOTATOC PET images of refractory meningioma treated by 177Lu-DOTATATE is as efficient as the currently routine manual segmentation method and limits inter- and intra-observer variabilities. • This semi-automated method for segmentation of refractory meningioma is easily applicable to routine practice and transferrable across PET centers.

Keywords: 68Gallium-DOTA(0)-Tyr(3)-octreotide; Lutetium Lu 177 dotatate; Meningioma; Radiometry.

PubMed Disclaimer

References

    1. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol 22:iv1–iv96 - DOI - PubMed - PMC
    1. Goldbrunner R, Stavrinou P, Jenkinson MD et al (2021) EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol 23:1821–1834 - DOI - PubMed - PMC
    1. Kaley T, Barani I, Chamberlain M et al (2014) Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol 16:829–840 - DOI - PubMed - PMC
    1. Rachinger W, Stoecklein VM, Terpolilli NA et al (2015) Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med 56:347–353 - DOI - PubMed
    1. Mirian C, Duun-Henriksen AK, Maier A et al (2021) Somatostatin receptor-targeted radiopeptide therapy in treatment-refractory meningioma: individual patient data meta-analysis. J Nucl Med 62:507–513 - DOI - PubMed

MeSH terms

LinkOut - more resources