Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul:151:41-49.
doi: 10.1016/j.clinph.2023.04.001. Epub 2023 Apr 18.

Muscle velocity recovery cycles in myopathy

Affiliations
Free article

Muscle velocity recovery cycles in myopathy

M Meldgaard et al. Clin Neurophysiol. 2023 Jul.
Free article

Abstract

Objective: To understand the pathophysiology of myopathies by using muscle velocity recovery cycles (MVRC) and frequency ramp (RAMP) methodologies.

Methods: 42 patients with quantitative electromyography (qEMG) and biopsy or genetic verified myopathy and 42 healthy controls were examined with qEMG, MVRC and RAMP, all recorded from the anterior tibial muscle.

Results: There were significant differences in the motor unit potential (MUP) duration, the early and late supernormalities of the MVRC and the RAMP latencies in myopathy patients compared to controls (p < 0.05 apart from muscle relatively refractory period (MRRP)). When dividing into subgroups, the above-mentioned changes in MVRC and RAMP parameters were increased for the patients with non-inflammatory myopathy, while there were no significant changes in the group of patients with inflammatory myopathy.

Conclusions: The MVRC and RAMP parameters can discriminate between healthy controls and myopathy patients, more significantly for non-inflammatory myopathy. MVRC differences with normal MRRP in myopathy differs from other conditions with membrane depolarisation.

Significance: MVCR and RAMP may have a potential in understanding disease pathophysiology in myopathies. The pathogenesis in non-inflammatory myopathy does not seem to be caused by a depolarisation of the resting membrane potential but rather by the change in sodium channels of the muscle membrane.

Keywords: Electromyography; Frequency ramp; Inflammatory myopathy; Muscle velocity recovery cycles; Non-inflammatory myopathy.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types