Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep:645:266-275.
doi: 10.1016/j.jcis.2023.04.103. Epub 2023 May 1.

Studying kinetics of a surface reaction using elastocapillary effect

Affiliations

Studying kinetics of a surface reaction using elastocapillary effect

Nitish Singh et al. J Colloid Interface Sci. 2023 Sep.

Abstract

Hypothesis: When a liquid is inserted inside a microfluidic channel, embedded within a soft elastomeric layer, e.g. poly(dimethylsiloxane) (PDMS), the thin wall of the channel deforms, due to change in solid-liquid interfacial energy. This phenomenon is known as Elastocapillary effect. The evolution of a new species at this interface too alters the interfacial energy and consequently the extent of deformation. Hence, it should be possible to monitor dynamics of physical and chemical events occurring near to the solid-liquid interface by measuring this deformation by a suitable method, e.g., optical profilometer.

Experiments: Aqueous solution of a metal salt inserted into these channels reacts with Silicon-hydride present in PDMS, yielding metallic nanoparticles at the channel surface. The kinetics of this reaction was captured in real time, by measuring the wall deformation. Similarly, physical adsorption of a protein: Bovine Serum Albumin, on PDMS surface too was monitored.

Finding: The rate of change in deformation can be related to rate of these processes to extract the respective reaction rate constant. These results show that Elastocapillary effect can be a viable analytical tool for in-situ monitoring of many physical and chemical processes for which, the reaction site is inaccessible to conventional analytical methods.

Keywords: Elastocapillary effect; Microchannel; Protein adsorption; Rate constant; Solid–liquid interfacial energy; Surface reaction; UV–vis absorbance spectra; Wall deformation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources