Machine learning versus logistic regression for the prediction of complications after pancreatoduodenectomy
- PMID: 37150712
- DOI: 10.1016/j.surg.2023.03.012
Machine learning versus logistic regression for the prediction of complications after pancreatoduodenectomy
Abstract
Background: Machine learning is increasingly advocated to develop prediction models for postoperative complications. It is, however, unclear if machine learning is superior to logistic regression when using structured clinical data. Postoperative pancreatic fistula and delayed gastric emptying are the two most common complications with the biggest impact on patient condition and length of hospital stay after pancreatoduodenectomy. This study aimed to compare the performance of machine learning and logistic regression in predicting pancreatic fistula and delayed gastric emptying after pancreatoduodenectomy.
Methods: This retrospective observational study used nationwide data from 16 centers in the Dutch Pancreatic Cancer Audit between January 2014 and January 2021. The area under the curve of a machine learning and logistic regression model for clinically relevant postoperative pancreatic fistula and delayed gastric emptying were compared.
Results: Overall, 799 (16.3%) patients developed a postoperative pancreatic fistula, and 943 developed (19.2%) delayed gastric emptying. For postoperative pancreatic fistula, the area under the curve of the machine learning model was 0.74, and the area under the curve of the logistic regression model was 0.73. For delayed gastric emptying, the area under the curve of the machine learning model and logistic regression was 0.59.
Conclusion: Machine learning did not outperform logistic regression modeling in predicting postoperative complications after pancreatoduodenectomy.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
Comment in
-
Invited commentary: Machine learning versus logistic regression for the prediction of complications after pancreatoduodenectomy.Surgery. 2023 Sep;174(3):441. doi: 10.1016/j.surg.2023.06.011. Epub 2023 Jul 21. Surgery. 2023. PMID: 37481420 No abstract available.
-
Letter to the editor. Comment on: Machine learning versus logistic regression for the prediction of complications after pancreatoduodenectomy.Surgery. 2024 May;175(5):1462. doi: 10.1016/j.surg.2023.09.056. Epub 2023 Nov 10. Surgery. 2024. PMID: 37953149 No abstract available.
-
Persistent challenges in pancreatic surgery: Postoperative pancreatic fistula prediction in the machine learning era-Response to: Machine learning versus logistic regression for the prediction of complications after pancreaticoduodenectomy.Surgery. 2024 May;175(5):1466-1467. doi: 10.1016/j.surg.2023.10.036. Epub 2023 Nov 30. Surgery. 2024. PMID: 38040594 No abstract available.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources