Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 28;14(17):4480-4484.
doi: 10.1039/d3sc00359k. eCollection 2023 May 3.

Chirally and chemically reversible Strecker reaction

Affiliations

Chirally and chemically reversible Strecker reaction

Yutaro Machida et al. Chem Sci. .

Abstract

In the pursuit of a credible mechanism for the abiotic synthesis of α-amino acids, solid-state asymmetric Strecker/retro-Strecker reactions have been demonstrated. Asymmetric addition of cyanide to enantiomorphic crystals of achiral imines proceeded to produce enantioenriched aminonitriles. Moreover, dehydrocyanation of enantioenriched aminonitriles gave chiral crystals of achiral imines stereoselectively. We found, for the first time to the best of our knowledge, a stereoinversion of the synthetic intermediates imine and aminonitrile in the sequence of reactions including HCN addition and elimination. Thus, the reversible Strecker reaction is expected to be a focus of research on the origin of chirality.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Concept of the current work.
Fig. 2
Fig. 2. (a) Chiral crystallization of achiral imine 1. (b) Solid-state CD spectrum of 1. (c) Single-crystal X-ray structure of 1 (CCDC 2224018†).
Fig. 3
Fig. 3. Reversible asymmetric Strecker reaction between imine 3 and aminonitrile 4 with a 2-furyl substituent. (a) Synthesis of imine 3. (b) Single-crystal X-ray structure of [CD(+)300KBr]-3 (CCDC 2224020†). (c) Solid-state CD spectrum of 3. (d) Asymmetric vapor-phase addition of HCN to imine 3. (e) Stereoselective retro-Strecker reaction of 4 (CCDC 2224021†).
Fig. 4
Fig. 4. Enantioselectivity of the addition of HCN to (a) [CD(+)340KBr]-1 and (b) [CD(+)300KBr]-3 to form d-2 and -4, respectively.

References

    1. Pasteur L. Ann. Chim. Phys. 1848;24:442–459.
    1. Guijarro A. and Yus M., The origin of chirality in the molecules of life, The Royal Society of Chemistry, Cambridge, 2009
    2. Soai K. Proc. Jpn. Acad., Ser. B. 2019;95:89–110. doi: 10.2183/pjab.95.009. - DOI - PMC - PubMed
    3. Sallembien Q. Bouteiller L. Crassous J. Raynal M. Chem. Soc. Rev. 2022;51:3436–3476. doi: 10.1039/D1CS01179K. - DOI - PubMed
    4. Blackmond D. G. Chem. Rev. 2020;120:4831–4847. doi: 10.1021/acs.chemrev.9b00557. - DOI - PubMed
    5. Bissette A. J. Fletcher S. P. Angew. Chem., Int. Ed. 2013;52:12800–12826. doi: 10.1002/anie.201303822. - DOI - PubMed
    6. Lee C. Weber J. M. Rodriguez L. E. Sheppard R. Y. Barge L. M. Berger E. L. Burton A. S. Symmetry. 2022;14:460. doi: 10.3390/sym14030460. - DOI
    1. Bada J. L. Nature. 1995;374:594–595. doi: 10.1038/374594a0. - DOI - PubMed
    2. Weissbuch I. Lahav M. Chem. Rev. 2011;111:3236–3267. doi: 10.1021/cr1002479. - DOI - PubMed
    3. Kondepudi D. K. Kaufman R. J. Singh N. Science. 1990;250:975–976. doi: 10.1126/science.250.4983.975. - DOI - PubMed
    4. Viedma C. Phys. Rev. Lett. 2005;94:065504. doi: 10.1103/PhysRevLett.94.065504. - DOI - PubMed
    5. Noorduin W. L. Vlieg E. Kellogg R. M. Kaptein B. Angew. Chem., Int. Ed. 2009;48:9600–9606. doi: 10.1002/anie.200905215. - DOI - PubMed
    6. Buhse T. Cruz J.-M. Noble-Teran M. E. Hochberg D. Ribó J. M. Crusats J. Micheau J.-C. Chem. Rev. 2021;121:2147–2229. doi: 10.1021/acs.chemrev.0c00819. - DOI - PubMed
    7. Viedma C. McBride J. M. Kahr B. Cintas P. Angew. Chem., Int. Ed. 2013;52:10545–10548. doi: 10.1002/anie.201303915. - DOI - PubMed
    8. Ernst K.-H. Phys. Status Solidi B. 2012;249:2057–2088. doi: 10.1002/pssb.201248188. - DOI
    9. Rikken G. L. Raupach E. Nature. 2000;405:932–935. doi: 10.1038/35016043. - DOI - PubMed
    10. Naaman R. Paltiel Y. Waldeck D. H. Nat. Rev. Chem. 2019;3:250–260. doi: 10.1038/s41570-019-0087-1. - DOI
    11. Inoue Y. Chem. Rev. 1992;92:741–770. doi: 10.1021/cr00013a001. - DOI
    12. Feringa B. L. van Delden R. A. Angew. Chem., Int. Ed. 1999;38:3418–3438. doi: 10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V. - DOI - PubMed
    13. Kawasaki T. Sato M. Ishiguro S. Saito T. Morishita Y. Sato I. Nishino H. Inoue Y. Soai K. J. Am. Chem. Soc. 2005;127:3274–3275. doi: 10.1021/ja0422108. - DOI - PubMed
    14. Cronin J. R. Pizzarello S. Science. 1997;275:951–955. doi: 10.1126/science.275.5302.951. - DOI - PubMed
    15. Myrgorodska I. Meinert D. Hoffmann S. V. Jones N. C. Nahon L. Meierhenrich U. J. ChemPlusChem. 2017;82:74–87. doi: 10.1002/cplu.201600214. - DOI - PubMed
    16. Soloshonok V. A. Ueki H. Yasumoto M. Mekala S. Hirschi J. S. Singleton D. A. J. Am. Chem. Soc. 2007;129:12112–12113. doi: 10.1021/ja065603a. - DOI - PubMed
    17. Storch G. Trapp O. Nat. Chem. 2017;9:179–187. doi: 10.1038/nchem.2638. - DOI - PubMed
    18. Kawasaki T. Matsumura Y. Tsutsumi T. Suzuki K. Ito M. Soai K. Science. 2009;324:492–495. doi: 10.1126/science.1170322. - DOI - PubMed
    1. Matsuura T. Koshima H. J. Photochem. Photobiol., C. 2005;6:7–24. doi: 10.1016/j.jphotochemrev.2005.02.002. - DOI
    2. Sakamoto M. Chem.–Eur. J. 1997;3:684–689. doi: 10.1002/chem.19970030506. - DOI
    1. Penzien K. Schmidt G. M. J. Angew. Chem., Int. Ed. 1969;8:608–609. doi: 10.1002/anie.196906082. - DOI