Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 24;145(20):11045-11055.
doi: 10.1021/jacs.3c00124. Epub 2023 May 11.

Ultraviolet Photodissociation of Proteinogenic Amino Acids

Affiliations

Ultraviolet Photodissociation of Proteinogenic Amino Acids

Brendan Moore et al. J Am Chem Soc. .

Abstract

The ultraviolet photochemistry of the amino acids glycine, leucine, proline, and serine in their neutral forms was investigated using parahydrogen matrix-isolation spectroscopy. Irradiation by 213 nm light destroys the chirality of all three chiral amino acids as a result of the α-carbonyl C-C bond cleavage and hydrocarboxyl (HOCO) radical production. The temporal behavior of the Fourier-transform infrared spectra revealed that HOCO radicals rapidly reach a steady state, which occurs predominantly due to photodissociation of HOCO into CO + OH or CO2 + H. In glycine and leucine, the amine radicals generated by the α-carbonyl C-C bond cleavage rapidly undergo hydrogen elimination to yield methanimine and 3-methylbutane-1-imine, respectively. Breaking of the α-carbonyl C-C bond in proline appeared to yield 1-pyrroline, although due to its weak absorption it remains unconfirmed. In serine, additional products were formaldehyde and E/Z ethanimine. The present study shows that the direct production of HOCO previously observed in α-alanine generalizes to other amino acids of varying structure. It also revealed a tendency for amino acid photolysis to form imines rather than amine radicals. HOCO should be useful in the search for amino acids in interstellar space, particularly in combination with simple imine molecules.

PubMed Disclaimer

Publication types

LinkOut - more resources