Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 24:13:1114701.
doi: 10.3389/fonc.2023.1114701. eCollection 2023.

Estimating complete cancer prevalence in Europe: validity of alternative vs standard completeness indexes

Collaborators, Affiliations

Estimating complete cancer prevalence in Europe: validity of alternative vs standard completeness indexes

Elena Demuru et al. Front Oncol. .

Abstract

Introduction: Comparable indicators on complete cancer prevalence are increasingly needed in Europe to support survivorship care planning. Direct measures can be biased by limited registration time and estimates are needed to recover long term survivors. The completeness index method, based on incidence and survival modelling, is the standard most validated approach.

Methods: Within this framework, we consider two alternative approaches that do not require any direct modelling activity: i) empirical indices derived from long established European registries; ii) pre-calculated indices derived from US-SEER cancer registries. Relying on the EUROCARE-6 study dataset we compare standard vs alternative complete prevalence estimates using data from 62 registries in 27 countries by sex, cancer type and registration time.

Results: For tumours mostly diagnosed in the elderly the empirical estimates differ little from standard estimates (on average less than 5% after 10-15 years of registration), especially for low prognosis cancers. For early-onset cancers (bone, brain, cervix uteri, testis, Hodgkin disease, soft tissues) the empirical method may produce substantial underestimations of complete prevalence (up to 20%) even when based on 35-year observations. SEER estimates are comparable to the standard ones for most cancers, including many early-onset tumours, even when derived from short time series (10-15 years). Longer observations are however needed when cancer-specific incidence and prognosis differ remarkably between US and European populations (endometrium, thyroid or stomach).

Discussion: These results may facilitate the dissemination of complete prevalence estimates across Europe and help bridge the current information gaps.

Keywords: EUROCARE; Europe; SEER program; cancer prevalence; cancer registries; cancer survivors; cancer survivorship.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Prevalence completeness index (R index) at 1st January 2013 estimated for some tumours at low prognosis (oesophagus, pancreas, gallbladder) according to alternative methods: SEER model-based, EU model-based, EU empirical by age at prevalence date and registration time length (15 and 35 years).
Figure 2
Figure 2
Prevalence completeness index (R-index) at 1st January 2013 estimated for some frequent medium-high prognosis tumours (breast, colon-rectum, corpus uteri) according to alternative methods: SEER model-based, EU model-based, EU empirical by age at prevalence date and registration time length (15 and 35 years).
Figure 3
Figure 3
Prevalence completeness index (R-index) at 1st January 2013 estimated for some tumours diagnosed at young age (testis, bones, cervix uteri) according to alternative methods (SEER model-based, EU model-based, EU empirical by age at prevalence date and registration time length (15 and 35 years).
Figure 4
Figure 4
Percent relative difference (%) by registration length at 1/1/2013 of complete prevalence estimates obtained with SEER model-based or EU empirical R-index against EU model-based estimate as reference value. Each point corresponds to one of the 62 registries in dataset d of Table 1 .

References

    1. Capocaccia R, De Angelis R. Estimating the completeness of prevalence based on cancer registry data. Stat Med (1997) 16(4):425–40. doi: 10.1002/(SICI)1097-0258(19970228)16:4<425::AID-SIM414>3.0.CO;2-Z - DOI - PubMed
    1. Merrill RM, Capocaccia R, Feuer EJ, Mariotto A. Cancer prevalence estimates based on tumour registry data in the surveillance, epidemiology, and end results (SEER) program. Int J Epidemiol (2000) 29(2):197–207. doi: 10.1093/ije/29.2.197 - DOI - PubMed
    1. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. . SEER cancer statistics review, 1975-2017, National Cancer Institute. Bethesda, MD: (2020). Available at: https://seer.cancer.gov/csr/1975_2017/.
    1. Surveillance research program. national cancer institute COMPREV software. Available at: https://surveillance.cancer.gov/comprev/.
    1. Global cancer observatory. Available at: https://gco.iarc.fr.

LinkOut - more resources