Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 May 11;257(6):115.
doi: 10.1007/s00425-023-04146-8.

Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants

Affiliations
Review

Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants

Muhammad Ahsan Altaf et al. Planta. .

Abstract

Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.

Keywords: Antioxidant enzymes; Growth; Heavy metal; Melatonin; Oxidative damage; Photosynthesis.

PubMed Disclaimer

References

    1. Aghdam MS, Luo Z, Jannatizadeh A, Sheikh-Assadi M, Sharafi Y, Farmani B, Fard JR, Razavi F (2019) Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chem 275:549–556 - PubMed - DOI
    1. Ahammed GJ, Wu M, Wang Y, Yan Y, Mao Q, Ren J, Ma R, Liu A, Chen S (2020) Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci Hortic 265:109205 - DOI
    1. Al-Huqail AA, Khan MN, Ali HM, Siddiqui MH, Al-Huqail AA, AlZuaibr FM, Al-Muwayhi MA, Marraiki N, Al-Humaid L (2020) Exogenous melatonin mitigates boron toxicity in wheat. Ecotoxicol Environ Saf 201:110822 - PubMed - DOI
    1. Ali S, Gill RA, Ulhassan Z, Zhang N, Hussain S, Zhang K, Huang Q, Sagir M, Tahir MB, Gill MB, Mwamba TM (2023) Exogenously applied melatonin enhanced the tolerance of Brassica napus against cobalt toxicity by modulating antioxidant defense, osmotic adjustment, and expression of stress response genes. Ecotoxicol Environ Saf 252:114624 - PubMed - DOI
    1. Altaf MA, Shahid R, Ren MX, Altaf MM, Jahan MS, Khan LU (2021a) melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J Soil Sci Plant Nutr 21:1842–1855 - DOI

LinkOut - more resources