Inorganic Compounds as Remineralizing Fillers in Dental Restorative Materials: Narrative Review
- PMID: 37176004
- PMCID: PMC10179470
- DOI: 10.3390/ijms24098295
Inorganic Compounds as Remineralizing Fillers in Dental Restorative Materials: Narrative Review
Abstract
Secondary caries is one of the leading causes of resin-based dental restoration failure. It is initiated at the interface of an existing restoration and the restored tooth surface. It is mainly caused by an imbalance between two processes of mineral loss (demineralization) and mineral gain (remineralization). A plethora of evidence has explored incorporating several bioactive compounds into resin-based materials to prevent bacterial biofilm attachment and the onset of the disease. In this review, the most recent advances in the design of remineralizing compounds and their functionalization to different resin-based materials' formulations were overviewed. Inorganic compounds, such as nano-sized amorphous calcium phosphate (NACP), calcium fluoride (CaF2), bioactive glass (BAG), hydroxyapatite (HA), fluorapatite (FA), and boron nitride (BN), displayed promising results concerning remineralization, and direct and indirect impact on biofilm growth. The effects of these compounds varied based on these compounds' structure, the incorporated amount or percentage, and the intended clinical application. The remineralizing effects were presented as direct effects, such as an increase in the mineral content of the dental tissue, or indirect effects, such as an increase in the pH around the material. In some of the reported investigations, inorganic remineralizing compounds were combined with other bioactive agents, such as quaternary ammonium compounds (QACs), to maximize the remineralization outcomes and the antibacterial action against the cariogenic biofilms. The reviewed literature was mainly based on laboratory studies, highlighting the need to shift more toward testing the performance of these remineralizing compounds in clinical settings.
Keywords: bioactive; biofilm; dental; resin composite; secondary caries.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Machiulskiene V., Campus G., Carvalho J.C., Dige I., Ekstrand K.R., Jablonski-Momeni A., Maltz M., Manton D.J., Martignon S., Martinez-Mier E.A., et al. Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020;54:7–14. doi: 10.1159/000503309. - DOI - PubMed
-
- Mokeem L.S., Balhaddad A.A., Garcia I.M., Collares F.M., Melo M.A.S. Benzyldimethyldodecyl Ammonium Chloride Doped Dental Adhesive: Impact on Core’s Properties, Biosafety, and Antibacterial/Bonding Performance after Aging. J. Funct. Biomater. 2022;13:190. doi: 10.3390/jfb13040190. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
