A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
- PMID: 37176232
- PMCID: PMC10179528
- DOI: 10.3390/ma16093349
A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
Abstract
Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (εz) and strain energy density (We). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering.
Keywords: bone allografts; finite element analysis; microarchitectural parameters; micromechanical parameters.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
A novel mechanical parameter to quantify the microarchitecture effect on apparent modulus of trabecular bone: A computational analysis of ineffective bone mass.Bone. 2020 Jun;135:115314. doi: 10.1016/j.bone.2020.115314. Epub 2020 Mar 8. Bone. 2020. PMID: 32156663
-
Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.J Bone Miner Res. 2008 Feb;23(2):223-35. doi: 10.1359/jbmr.071009. J Bone Miner Res. 2008. PMID: 17907921 Free PMC article.
-
Quantitative imaging of peripheral trabecular bone microarchitecture using MDCT.Med Phys. 2018 Jan;45(1):236-249. doi: 10.1002/mp.12632. Epub 2017 Nov 23. Med Phys. 2018. PMID: 29064579 Free PMC article.
-
Local topological analysis at the distal radius by HR-pQCT: Application to in vivo bone microarchitecture and fracture assessment in the OFELY study.Bone. 2012 Sep;51(3):362-8. doi: 10.1016/j.bone.2012.06.008. Epub 2012 Jun 20. Bone. 2012. PMID: 22728912
-
The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing.Stud Health Technol Inform. 1997;40:97-112. Stud Health Technol Inform. 1997. PMID: 10168885 Review.
Cited by
-
Effect of trabecular architectures on the mechanical response in osteoporotic and healthy human bone.Med Biol Eng Comput. 2024 Nov;62(11):3263-3281. doi: 10.1007/s11517-024-03134-8. Epub 2024 Jun 1. Med Biol Eng Comput. 2024. PMID: 38822996 Free PMC article.
-
In Vivo Assessment of Skin Surface Pattern: Exploring Its Potential as an Indicator of Bone Biomechanical Properties.Bioengineering (Basel). 2023 Nov 21;10(12):1338. doi: 10.3390/bioengineering10121338. Bioengineering (Basel). 2023. PMID: 38135929 Free PMC article.
-
More severe microdamage and micromechanical alterations: altered subchondral bone remodeling in varus knee osteoarthritis with osteoporosis.Osteoporos Int. 2025 Aug 27. doi: 10.1007/s00198-025-07652-5. Online ahead of print. Osteoporos Int. 2025. PMID: 40864249
-
Necrotic enteritis affects bone growth and bone microstructure in non-selected conventional and modern meat-type chicken strains.Poult Sci. 2025 Aug;104(8):105343. doi: 10.1016/j.psj.2025.105343. Epub 2025 May 26. Poult Sci. 2025. PMID: 40466263 Free PMC article.
References
-
- de Wildt B.W.M., Ansari S., Sommerdijk N.A.J.M., Ito K., Akiva A., Hofmann S. From Bone Regeneration to Three-Dimensional in Vitro Models: Tissue Engineering of Organized Bone Extracellular Matrix. Curr. Opin. Biomed. Eng. 2019;10:107–115. doi: 10.1016/j.cobme.2019.05.005. - DOI
-
- Salati M.A., Khazai J., Tahmuri A.M., Samadi A., Taghizadeh A., Taghizadeh M., Zarrintaj P., Ramsey J.D., Habibzadeh S., Seidi F., et al. Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers. 2020;12:1150. doi: 10.3390/polym12051150. - DOI - PMC - PubMed
-
- Bose S., Vahabzadeh S., Bandyopadhyay A. Bone Tissue Engineering Using 3D Printing. Mater. Today. 2013;16:496–504. doi: 10.1016/j.mattod.2013.11.017. - DOI
LinkOut - more resources
Full Text Sources