Humoral and Cellular Response and Associated Variables Nine Months following BNT162b2 Vaccination in Healthcare Workers
- PMID: 37176612
- PMCID: PMC10179201
- DOI: 10.3390/jcm12093172
Humoral and Cellular Response and Associated Variables Nine Months following BNT162b2 Vaccination in Healthcare Workers
Abstract
In this study, we aimed to illustrate the trajectory of humoral and cellular immunity nine months after primary vaccination with the BNT162b2 mRNA vaccine among 189 healthcare workers (HCWs). Additionally, we endeavored to identify correlations between immunity parameters and a number of common variables and comorbidities. A total of 189 healthcare workers (HCWs), vaccinated against COVID-19, were finally included in the study. All of the subjects had received two doses of the BNT162b2 vaccine; had undergone antibody tests one, four and nine months post-vaccination; and had completed a medical questionnaire. Further samples taken at nine months were tested for cellular immunity. No participants had evidence of COVID-19 infection pre- or post-vaccination. An anti-S1 receptor binding domain (RBD) antibody assay was used to assess humoral response, and cellular immunity was estimated with an INF-γ release assay (IGRA). Statistical analysis was performed using STATA. We report a statistically significant antibody drop over time. Being above the age of 40 or a smoker reduces the rise of antibodies by 37% and 28%, respectively. More than half of the participants did not demonstrate T-cell activation at nine months. Female gender and antibody levels at four months predispose detection of cellular immunity at nine months post-immunization. This study furthers the qualitative, quantitative, and temporal understanding of the immune response to the BNT162b2 mRNA vaccine and the effect of correlated factors.
Keywords: COVID-19; INF-γ release assay; antibodies; cellular immunity; humoral immunity; mRNA vaccine.
Conflict of interest statement
The authors have no conflict of interest to declare. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures
References
-
- Thompson M.G., Burgess J.L., Naleway A.L., Tyner H.L., Yoon S.K., Meece J., Olsho L., Caban-Martinez A., Fowlkes D., Lutrick K., et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection among Health Care Personnel, First Responders, and Other Essential and Frontline Workers—Eight U.S. Locations, December 2020–March 2021. Morb. Mortal. Wkly. Rep. 2021;70:495–500. - PMC - PubMed
-
- Vasileiou E., Simpson C.R., Shi T., Kerr S., Agrawal U., Akbari A., Bedston S., Beggs J., Bradley D., Chuter A., et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: A national prospective cohort study. Lancet. 2021;397:1646–1657. doi: 10.1016/S0140-6736(21)00677-2. - DOI - PMC - PubMed
-
- Haas E.J., Angulo F.J., McLaughlin J.M., Anis E., Singer S.R., Khan F., Brooks N., Smaja M., Mircus G., Pan K., et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet. 2021;397:1819–1829. doi: 10.1016/S0140-6736(21)00947-8. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
