Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 26;25(20):3728-3732.
doi: 10.1021/acs.orglett.3c01189. Epub 2023 May 15.

Asymmetric Organocatalysis in the Remote (3 + 2)-Cycloaddition to 4-(Alk-1-en-1-yl)-3-cyanocoumarins

Affiliations

Asymmetric Organocatalysis in the Remote (3 + 2)-Cycloaddition to 4-(Alk-1-en-1-yl)-3-cyanocoumarins

Beata Łukasik et al. Org Lett. .

Abstract

The application of organocatalytic bifunctional activation in the remote (3 + 2)-cycloaddition between 4-(alk-1-en-1-yl)-3-cyanocoumarins and imines derived from salicylaldehyde is demonstrated. Products, bearing two biologically relevant units, have been obtained with good chemical and stereochemical efficiency. The stereochemical outcome of the process results from the application of a quinine-derived catalyst. Selected transformations of the cycloadducts leading to further chemical diversity have been demonstrated.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Representative Bioactive Compounds Containing a Coumarin or Pyrrolidine Skeleton
Scheme 2
Scheme 2. Synthetic Goals of Our Research
Scheme 3
Scheme 3. Asymmetric Remote (3 + 2)-Cycloaddition of o-Hydroxy Aromatic Aldimines 2bg to 4-(Alk-1-en-1-yl)-3-cyanocoumarin 1a: Scope Studies
Scheme 4
Scheme 4. Condensation of 3 with 1,1′-Carbonyldiimidazole
Scheme 5
Scheme 5. Asymmetric Remote (3 + 2)-Cycloaddition to 4-(Alk-1-en-1-yl)-3-cyanocoumarins 1: Mechanistic Considerations

References

    1. Busacca C. A.; Fandrick D. R.; Song J. J.; Senanayake C. H. The Growing Impact of Catalysis in the Pharmaceutical Industry. Adv. Synth. Catal. 2011, 353, 1825–1864. 10.1002/adsc.201100488. - DOI
    1. Comprehensive Asymmetric Catalysis; Jacobsen E. N., Pfaltz A., Yamamoto H., Eds.; Springer: Berlin, Germany, 1999.
    2. Acc. Chem. Res. 2000, 33( (6), ) (Special Issue “Catalytic Asymmetric Synthesis”). - PubMed
    3. New Frontiers in Asymmetric Catalysis; Mikami K., Lautens M., Eds.; Wiley-Interscience, 2007.
    4. Strohmeier G.-A.; Pichler M.; May O.; Gruber-Khadjawi M. Application of Designed Enzymes in Organic Synthesis. Chem. Rev. 2011, 111, 4141–4164. 10.1021/cr100386u. - DOI - PubMed
    1. Bertelsen S.; Jørgensen K. A. Organocatalysis—after the gold rush. Chem. Soc. Rev. 2009, 38, 2178.10.1039/b903816g. - DOI - PubMed
    2. Hughes D. L. Asymmetric Organocatalysis in Drug Development—Highlights of Recent Patent Literature. Org. Process Res. Dev. 2018, 22, 574–584. 10.1021/acs.oprd.8b00096. - DOI
    3. Vetica F.; de Figueiredo R. M.; Orsini M.; Tofani D.; Gasperi T. Recent Advances in Organocatalytic Cascade Reactions toward the Formation of Quaternary Stereocenters. Synthesis 2015, 47, 2139–2184. 10.1055/s-0034-1378742. - DOI
    4. Xiang S.-H.; Tan B. Advances in asymmetric organocatalysis over the last 10 years. Nature Commun. 2020, 11, 3786.10.1038/s41467-020-17580-z. - DOI - PMC - PubMed
    1. Bella M.; Gasperi T. Organocatalytic Formation of Quaternary Stereocenters. Synthesis 2009, 2009 (10), 1583–1614. 10.1055/s-0029-1216796. - DOI
    2. Palomo C.; Oiarbide M.; López R. Asymmetric organocatalysis by chiral Brønsted bases: implications and applications. Chem. Soc. Rev. 2009, 38, 632–653. 10.1039/B708453F. - DOI - PubMed
    3. Marcelli T.; Hiemstra H. Cinchona Alkaloids in Asymmetric Organocatalysis. Synthesis 2010, 2010 (8), 1229–1279. 10.1055/s-0029-1218699. - DOI
    4. Alemán J.; Parra A.; Jiang H.; Jørgensen K. A. Squaramides: Bridging from Molecular Recognition to Bifunctional Organocatalysis. Chem.-Eur. J. 2011, 17, 6890–6899. 10.1002/chem.201003694. - DOI - PubMed
    5. Melchiorre P. Cinchona-based Primary Amine Catalysis in the Asymmetric Functionalization of Carbonyl Compounds. Angew. Chem., Int. Ed. 2012, 51, 9748–9770. 10.1002/anie.201109036. - DOI - PubMed
    6. Katalyse mit primären Cinchona-Aminen zur asymmetrischen Funktionalisierung von Carbonylverbindungen. Angew. Chem. 2012, 124, 9886 - 9909.10.1002/ange.201109036
    7. Duan J.; Li P. Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: recent advances. Catal. Sci. Technol. 2014, 4, 311–320. 10.1039/C3CY00739A. - DOI
    1. Rouf A.; Tanyeli C. Squaramide based organocatalysts in organic transformations. Curr. Org. Chem. 2016, 20, 2996–3013. 10.2174/1385272820666160805113749. - DOI
    2. Sinibaldi A.; Nori V.; Baschieri A.; Fini F.; Arcadi A.; Carlone A. Organocatalysis and Beyond: Activating Reactions with Two Catalytic Species. Catalysts 2019, 9, 928.10.3390/catal9110928. - DOI
    3. Xu S.; Chen J.; Chen J.; Xiao W. Recent Progress in Applications of Cinchona Alkaloids and Their Derivatives in Asymmetric Catalysis. Chin. J. Org. Chem. 2020, 40, 3493–3516. 10.6023/cjoc202007004. - DOI