Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar;18(7):599-611.
doi: 10.2217/nnm-2022-0328. Epub 2023 May 17.

Dual-targeting exosomes for improved drug delivery in breast cancer

Affiliations
Free article

Dual-targeting exosomes for improved drug delivery in breast cancer

Nam Hb Tran et al. Nanomedicine (Lond). 2023 Mar.
Free article

Abstract

Aims: The authors investigated whether displaying more than one homing peptide enhanced the tumor-targeting efficiency of exosomes. Materials & methods: Exosomes from human embryonic kidney cells (HEK293F) were engineered to display either mono- or dual-tumor-penetrating peptides, iRGD and tLyp1. Exosomes were purified via tangential flow filtration followed by ultracentrifugation. Results: When loaded with doxorubicin (Dox), the dual iRGD-tLyp1 exosomes strongly enhanced Dox uptake in both MCF-7 and MDA-MB-231 breast cancer cell lines, superior to single iRGD or tLyp1 exosomes. The dual iRGD-tLyp1 exosomal Dox was also the most potent, with IC50/GI50 values being 3.7-17.0-times lower than those of free Dox and other exosomal Dox. Conclusion: Selecting appropriate combinatorial homing peptides could be an approach for future precision nanomedicine.

Keywords: breast cancer; doxorubicin; exosomes; gene/drug delivery; iRGD; nanomedicine; tLyp1.

PubMed Disclaimer

Publication types

LinkOut - more resources