Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 10;15(7):mfad033.
doi: 10.1093/mtomcs/mfad033.

Stable potassium isotope distribution in mouse organs and red blood cells: implication for biomarker development

Affiliations

Stable potassium isotope distribution in mouse organs and red blood cells: implication for biomarker development

Meng-Meng Cui et al. Metallomics. .

Abstract

Potassium (K) is an essential electrolyte for cellular functions in living organisms, and disturbances in K+ homeostasis could lead to various chronic diseases (e.g. hypertension, cardiac disease, diabetes, and bone health). However, little is known about the natural distribution of stable K isotopes in mammals and their application to investigate bodily homeostasis and/or as biomarkers for diseases. Here, we measured K isotopic compositions (δ41K, per mil deviation of 41K/39K from the NIST SRM 3141a standard) of brain, liver, kidney, and red blood cells (RBCs) from 10 mice (five females and five males) with three different genetic backgrounds. Our results reveal that different organs and RBCs have distinct K isotopic signatures. Specifically, the RBCs have heavy K isotopes enrichment with δ41K ranging from 0.67 to 0.08‰, while the brains show lighter K isotopic compositions with δ41K ranging from -1.13 to -0.09‰ compared to the livers (δ41K = -0.12 ± 0.58‰) and kidneys (δ41K = -0.24 ± 0.57‰). We found that the K isotopic and concentration variability is mostly controlled by the organs, with a minor effect of the genetic background and sex. Our study suggests that the K isotopic composition could be used as a biomarker for changes in K+ homeostasis and related diseases such as hypertension, cardiovascular, and neurodegenerative diseases.

Keywords: K concentration; K isotopes; genetic background; mouse organs; sex.

PubMed Disclaimer

Publication types

LinkOut - more resources