Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul;48(4):443-453.
doi: 10.1007/s13318-023-00830-y. Epub 2023 May 18.

Pharmacokinetic Study of 14C-Radiolabeled p-Boronophenylalanine (BPA) in Sorbitol Solution and the Treatment Outcome of BPA-Based Boron Neutron Capture Therapy on a Tumor-Bearing Mouse Model

Affiliations
Free article

Pharmacokinetic Study of 14C-Radiolabeled p-Boronophenylalanine (BPA) in Sorbitol Solution and the Treatment Outcome of BPA-Based Boron Neutron Capture Therapy on a Tumor-Bearing Mouse Model

Tsubasa Watanabe et al. Eur J Drug Metab Pharmacokinet. 2023 Jul.
Free article

Abstract

Background and objective: Boron neutron capture therapy (BNCT) is a binary cancer treatment that combines boron administration and neutron irradiation. The tumor cells take up the boron compound and the subsequent neutron irradiation results in a nuclear fission reaction caused by the neutron capture reaction of the boron nuclei. This produces highly cytocidal heavy particles, leading to the destruction of tumor cells. p-boronophenylalanine (BPA) is widely used in BNCT but is insoluble in water and requires reducing sugar or sugar alcohol as a dissolvent to create an aqueous solution for administration. The purpose of this study was to investigate the pharmacokinetics of 14C-radiolabeled BPA using sorbitol as a dissolvent, which has not been reported before, and confirm whether neutron irradiation with a sorbitol solution of BPA can produce an antitumor effect of BNCT.

Materials and methods: In this study, we evaluated the sugar alcohol, sorbitol, as a novel dissolution aid and examined the consequent stability of the BPA for long-term storage. U-87 MG and SAS tumor cell lines were used for in vitro and in vivo experiments. We examined the pharmacokinetics of 14C-radiolabeled BPA in sorbitol solution, administered either intravenously or subcutaneously to a mouse tumor model. Neutron irradiation was performed in conjunction with the administration of BPA in sorbitol solution using the same tumor cell lines both in vitro and in vivo.

Results: We found that BPA in sorbitol solution maintains stability for longer than in fructose solution, and can therefore be stored for a longer period. Pharmacokinetic studies with 14C-radiolabeled BPA confirmed that the sorbitol solution of BPA distributed through tumors in much the same way as BPA in fructose. Neutron irradiation was found to produce dose-dependent antitumor effects, both in vitro and in vivo, after the administration of BPA in sorbitol solution.

Conclusion: In this report, we demonstrate the efficacy of BPA in sorbitol solution as the boron source in BNCT.

PubMed Disclaimer

References

    1. Barth RF, Coderre JA, Vicente MGH, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11:3987–4002. - DOI - PubMed
    1. Barth RF, Vicente MGH, Harling OK, Kiger WS 3rd, Riley KJ, Binns PJ, et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol. 2012;7:146. - DOI - PubMed - PMC
    1. Locher GL. Biological effects of therapeutic possibilities of neutrons. Am J Roentgenol Radium Ther. 1936;36:1–13.
    1. Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, et al. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet. 1989;2:388–9. - DOI - PubMed
    1. Hirose K, Konno A, Hiratsuka J, Yoshimoto S, Kato T, Ono K, et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan (10B) for recurrent or locally advanced head and neck cancer (JHN002): an open-label phase II trial. Radiother Oncol. 2021;155:182–7. - DOI - PubMed